| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cibl |  |-  L^1 | 
						
							| 1 |  | vf |  |-  f | 
						
							| 2 |  | cmbf |  |-  MblFn | 
						
							| 3 |  | vk |  |-  k | 
						
							| 4 |  | cc0 |  |-  0 | 
						
							| 5 |  | cfz |  |-  ... | 
						
							| 6 |  | c3 |  |-  3 | 
						
							| 7 | 4 6 5 | co |  |-  ( 0 ... 3 ) | 
						
							| 8 |  | citg2 |  |-  S.2 | 
						
							| 9 |  | vx |  |-  x | 
						
							| 10 |  | cr |  |-  RR | 
						
							| 11 |  | cre |  |-  Re | 
						
							| 12 | 1 | cv |  |-  f | 
						
							| 13 | 9 | cv |  |-  x | 
						
							| 14 | 13 12 | cfv |  |-  ( f ` x ) | 
						
							| 15 |  | cdiv |  |-  / | 
						
							| 16 |  | ci |  |-  _i | 
						
							| 17 |  | cexp |  |-  ^ | 
						
							| 18 | 3 | cv |  |-  k | 
						
							| 19 | 16 18 17 | co |  |-  ( _i ^ k ) | 
						
							| 20 | 14 19 15 | co |  |-  ( ( f ` x ) / ( _i ^ k ) ) | 
						
							| 21 | 20 11 | cfv |  |-  ( Re ` ( ( f ` x ) / ( _i ^ k ) ) ) | 
						
							| 22 |  | vy |  |-  y | 
						
							| 23 | 12 | cdm |  |-  dom f | 
						
							| 24 | 13 23 | wcel |  |-  x e. dom f | 
						
							| 25 |  | cle |  |-  <_ | 
						
							| 26 | 22 | cv |  |-  y | 
						
							| 27 | 4 26 25 | wbr |  |-  0 <_ y | 
						
							| 28 | 24 27 | wa |  |-  ( x e. dom f /\ 0 <_ y ) | 
						
							| 29 | 28 26 4 | cif |  |-  if ( ( x e. dom f /\ 0 <_ y ) , y , 0 ) | 
						
							| 30 | 22 21 29 | csb |  |-  [_ ( Re ` ( ( f ` x ) / ( _i ^ k ) ) ) / y ]_ if ( ( x e. dom f /\ 0 <_ y ) , y , 0 ) | 
						
							| 31 | 9 10 30 | cmpt |  |-  ( x e. RR |-> [_ ( Re ` ( ( f ` x ) / ( _i ^ k ) ) ) / y ]_ if ( ( x e. dom f /\ 0 <_ y ) , y , 0 ) ) | 
						
							| 32 | 31 8 | cfv |  |-  ( S.2 ` ( x e. RR |-> [_ ( Re ` ( ( f ` x ) / ( _i ^ k ) ) ) / y ]_ if ( ( x e. dom f /\ 0 <_ y ) , y , 0 ) ) ) | 
						
							| 33 | 32 10 | wcel |  |-  ( S.2 ` ( x e. RR |-> [_ ( Re ` ( ( f ` x ) / ( _i ^ k ) ) ) / y ]_ if ( ( x e. dom f /\ 0 <_ y ) , y , 0 ) ) ) e. RR | 
						
							| 34 | 33 3 7 | wral |  |-  A. k e. ( 0 ... 3 ) ( S.2 ` ( x e. RR |-> [_ ( Re ` ( ( f ` x ) / ( _i ^ k ) ) ) / y ]_ if ( ( x e. dom f /\ 0 <_ y ) , y , 0 ) ) ) e. RR | 
						
							| 35 | 34 1 2 | crab |  |-  { f e. MblFn | A. k e. ( 0 ... 3 ) ( S.2 ` ( x e. RR |-> [_ ( Re ` ( ( f ` x ) / ( _i ^ k ) ) ) / y ]_ if ( ( x e. dom f /\ 0 <_ y ) , y , 0 ) ) ) e. RR } | 
						
							| 36 | 0 35 | wceq |  |-  L^1 = { f e. MblFn | A. k e. ( 0 ... 3 ) ( S.2 ` ( x e. RR |-> [_ ( Re ` ( ( f ` x ) / ( _i ^ k ) ) ) / y ]_ if ( ( x e. dom f /\ 0 <_ y ) , y , 0 ) ) ) e. RR } |