Step |
Hyp |
Ref |
Expression |
0 |
|
ciccp |
|- RePart |
1 |
|
vm |
|- m |
2 |
|
cn |
|- NN |
3 |
|
vp |
|- p |
4 |
|
cxr |
|- RR* |
5 |
|
cmap |
|- ^m |
6 |
|
cc0 |
|- 0 |
7 |
|
cfz |
|- ... |
8 |
1
|
cv |
|- m |
9 |
6 8 7
|
co |
|- ( 0 ... m ) |
10 |
4 9 5
|
co |
|- ( RR* ^m ( 0 ... m ) ) |
11 |
|
vi |
|- i |
12 |
|
cfzo |
|- ..^ |
13 |
6 8 12
|
co |
|- ( 0 ..^ m ) |
14 |
3
|
cv |
|- p |
15 |
11
|
cv |
|- i |
16 |
15 14
|
cfv |
|- ( p ` i ) |
17 |
|
clt |
|- < |
18 |
|
caddc |
|- + |
19 |
|
c1 |
|- 1 |
20 |
15 19 18
|
co |
|- ( i + 1 ) |
21 |
20 14
|
cfv |
|- ( p ` ( i + 1 ) ) |
22 |
16 21 17
|
wbr |
|- ( p ` i ) < ( p ` ( i + 1 ) ) |
23 |
22 11 13
|
wral |
|- A. i e. ( 0 ..^ m ) ( p ` i ) < ( p ` ( i + 1 ) ) |
24 |
23 3 10
|
crab |
|- { p e. ( RR* ^m ( 0 ... m ) ) | A. i e. ( 0 ..^ m ) ( p ` i ) < ( p ` ( i + 1 ) ) } |
25 |
1 2 24
|
cmpt |
|- ( m e. NN |-> { p e. ( RR* ^m ( 0 ... m ) ) | A. i e. ( 0 ..^ m ) ( p ` i ) < ( p ` ( i + 1 ) ) } ) |
26 |
0 25
|
wceq |
|- RePart = ( m e. NN |-> { p e. ( RR* ^m ( 0 ... m ) ) | A. i e. ( 0 ..^ m ) ( p ` i ) < ( p ` ( i + 1 ) ) } ) |