| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cidfu |
|- idFunc |
| 1 |
|
vt |
|- t |
| 2 |
|
ccat |
|- Cat |
| 3 |
|
cbs |
|- Base |
| 4 |
1
|
cv |
|- t |
| 5 |
4 3
|
cfv |
|- ( Base ` t ) |
| 6 |
|
vb |
|- b |
| 7 |
|
cid |
|- _I |
| 8 |
6
|
cv |
|- b |
| 9 |
7 8
|
cres |
|- ( _I |` b ) |
| 10 |
|
vz |
|- z |
| 11 |
8 8
|
cxp |
|- ( b X. b ) |
| 12 |
|
chom |
|- Hom |
| 13 |
4 12
|
cfv |
|- ( Hom ` t ) |
| 14 |
10
|
cv |
|- z |
| 15 |
14 13
|
cfv |
|- ( ( Hom ` t ) ` z ) |
| 16 |
7 15
|
cres |
|- ( _I |` ( ( Hom ` t ) ` z ) ) |
| 17 |
10 11 16
|
cmpt |
|- ( z e. ( b X. b ) |-> ( _I |` ( ( Hom ` t ) ` z ) ) ) |
| 18 |
9 17
|
cop |
|- <. ( _I |` b ) , ( z e. ( b X. b ) |-> ( _I |` ( ( Hom ` t ) ` z ) ) ) >. |
| 19 |
6 5 18
|
csb |
|- [_ ( Base ` t ) / b ]_ <. ( _I |` b ) , ( z e. ( b X. b ) |-> ( _I |` ( ( Hom ` t ) ` z ) ) ) >. |
| 20 |
1 2 19
|
cmpt |
|- ( t e. Cat |-> [_ ( Base ` t ) / b ]_ <. ( _I |` b ) , ( z e. ( b X. b ) |-> ( _I |` ( ( Hom ` t ) ` z ) ) ) >. ) |
| 21 |
0 20
|
wceq |
|- idFunc = ( t e. Cat |-> [_ ( Base ` t ) / b ]_ <. ( _I |` b ) , ( z e. ( b X. b ) |-> ( _I |` ( ( Hom ` t ) ` z ) ) ) >. ) |