Description: Definition of the conditional operator for classes. The expression if ( ph , A , B ) is read "if ph then A else B ". See iftrue and iffalse for its values. In the mathematical literature, this operator is rarely defined formally but is implicit in informal definitions such as "let f(x)=0 if x=0 and 1/x otherwise".
An important use for us is in conjunction with the weak deduction theorem, which is described in the next section, beginning at dedth . (Contributed by NM, 15-May-1999)
Ref | Expression | ||
---|---|---|---|
Assertion | df-if | |- if ( ph , A , B ) = { x | ( ( x e. A /\ ph ) \/ ( x e. B /\ -. ph ) ) } |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | wph | |- ph |
|
1 | cA | |- A |
|
2 | cB | |- B |
|
3 | 0 1 2 | cif | |- if ( ph , A , B ) |
4 | vx | |- x |
|
5 | 4 | cv | |- x |
6 | 5 1 | wcel | |- x e. A |
7 | 6 0 | wa | |- ( x e. A /\ ph ) |
8 | 5 2 | wcel | |- x e. B |
9 | 0 | wn | |- -. ph |
10 | 8 9 | wa | |- ( x e. B /\ -. ph ) |
11 | 7 10 | wo | |- ( ( x e. A /\ ph ) \/ ( x e. B /\ -. ph ) ) |
12 | 11 4 | cab | |- { x | ( ( x e. A /\ ph ) \/ ( x e. B /\ -. ph ) ) } |
13 | 3 12 | wceq | |- if ( ph , A , B ) = { x | ( ( x e. A /\ ph ) \/ ( x e. B /\ -. ph ) ) } |