Metamath Proof Explorer


Definition df-if

Description: Definition of the conditional operator for classes. The expression if ( ph , A , B ) is read "if ph then A else B ". See iftrue and iffalse for its values. In the mathematical literature, this operator is rarely defined formally but is implicit in informal definitions such as "let f(x)=0 if x=0 and 1/x otherwise".

An important use for us is in conjunction with the weak deduction theorem, which is described in the next section, beginning at dedth . (Contributed by NM, 15-May-1999)

Ref Expression
Assertion df-if
|- if ( ph , A , B ) = { x | ( ( x e. A /\ ph ) \/ ( x e. B /\ -. ph ) ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 wph
 |-  ph
1 cA
 |-  A
2 cB
 |-  B
3 0 1 2 cif
 |-  if ( ph , A , B )
4 vx
 |-  x
5 4 cv
 |-  x
6 5 1 wcel
 |-  x e. A
7 6 0 wa
 |-  ( x e. A /\ ph )
8 5 2 wcel
 |-  x e. B
9 0 wn
 |-  -. ph
10 8 9 wa
 |-  ( x e. B /\ -. ph )
11 7 10 wo
 |-  ( ( x e. A /\ ph ) \/ ( x e. B /\ -. ph ) )
12 11 4 cab
 |-  { x | ( ( x e. A /\ ph ) \/ ( x e. B /\ -. ph ) ) }
13 3 12 wceq
 |-  if ( ph , A , B ) = { x | ( ( x e. A /\ ph ) \/ ( x e. B /\ -. ph ) ) }