Description: Define an image structure, which takes a structure and a function on the base set, and maps all the operations via the function. For this to work properly f must either be injective or satisfy the well-definedness condition f ( a ) = f ( c ) /\ f ( b ) = f ( d ) -> f ( a + b ) = f ( c + d ) for each relevant operation.
Note that although we call this an "image" by association to df-ima , in order to keep the definition simple we consider only the case when the domain of F is equal to the base set of R . Other cases can be achieved by restricting F (with df-res ) and/or R ( with df-ress ) to their common domain. (Contributed by Mario Carneiro, 23-Feb-2015) (Revised by AV, 6-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-imas | |- "s = ( f e. _V , r e. _V |-> [_ ( Base ` r ) / v ]_ ( ( { <. ( Base ` ndx ) , ran f >. , <. ( +g ` ndx ) , U_ p e. v U_ q e. v { <. <. ( f ` p ) , ( f ` q ) >. , ( f ` ( p ( +g ` r ) q ) ) >. } >. , <. ( .r ` ndx ) , U_ p e. v U_ q e. v { <. <. ( f ` p ) , ( f ` q ) >. , ( f ` ( p ( .r ` r ) q ) ) >. } >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` r ) >. , <. ( .s ` ndx ) , U_ q e. v ( p e. ( Base ` ( Scalar ` r ) ) , x e. { ( f ` q ) } |-> ( f ` ( p ( .s ` r ) q ) ) ) >. , <. ( .i ` ndx ) , U_ p e. v U_ q e. v { <. <. ( f ` p ) , ( f ` q ) >. , ( p ( .i ` r ) q ) >. } >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopOpen ` r ) qTop f ) >. , <. ( le ` ndx ) , ( ( f o. ( le ` r ) ) o. `' f ) >. , <. ( dist ` ndx ) , ( x e. ran f , y e. ran f |-> inf ( U_ n e. NN ran ( g e. { h e. ( ( v X. v ) ^m ( 1 ... n ) ) | ( ( f ` ( 1st ` ( h ` 1 ) ) ) = x /\ ( f ` ( 2nd ` ( h ` n ) ) ) = y /\ A. i e. ( 1 ... ( n - 1 ) ) ( f ` ( 2nd ` ( h ` i ) ) ) = ( f ` ( 1st ` ( h ` ( i + 1 ) ) ) ) ) } |-> ( RR*s gsum ( ( dist ` r ) o. g ) ) ) , RR* , < ) ) >. } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cimas | |- "s |
|
| 1 | vf | |- f |
|
| 2 | cvv | |- _V |
|
| 3 | vr | |- r |
|
| 4 | cbs | |- Base |
|
| 5 | 3 | cv | |- r |
| 6 | 5 4 | cfv | |- ( Base ` r ) |
| 7 | vv | |- v |
|
| 8 | cnx | |- ndx |
|
| 9 | 8 4 | cfv | |- ( Base ` ndx ) |
| 10 | 1 | cv | |- f |
| 11 | 10 | crn | |- ran f |
| 12 | 9 11 | cop | |- <. ( Base ` ndx ) , ran f >. |
| 13 | cplusg | |- +g |
|
| 14 | 8 13 | cfv | |- ( +g ` ndx ) |
| 15 | vp | |- p |
|
| 16 | 7 | cv | |- v |
| 17 | vq | |- q |
|
| 18 | 15 | cv | |- p |
| 19 | 18 10 | cfv | |- ( f ` p ) |
| 20 | 17 | cv | |- q |
| 21 | 20 10 | cfv | |- ( f ` q ) |
| 22 | 19 21 | cop | |- <. ( f ` p ) , ( f ` q ) >. |
| 23 | 5 13 | cfv | |- ( +g ` r ) |
| 24 | 18 20 23 | co | |- ( p ( +g ` r ) q ) |
| 25 | 24 10 | cfv | |- ( f ` ( p ( +g ` r ) q ) ) |
| 26 | 22 25 | cop | |- <. <. ( f ` p ) , ( f ` q ) >. , ( f ` ( p ( +g ` r ) q ) ) >. |
| 27 | 26 | csn | |- { <. <. ( f ` p ) , ( f ` q ) >. , ( f ` ( p ( +g ` r ) q ) ) >. } |
| 28 | 17 16 27 | ciun | |- U_ q e. v { <. <. ( f ` p ) , ( f ` q ) >. , ( f ` ( p ( +g ` r ) q ) ) >. } |
| 29 | 15 16 28 | ciun | |- U_ p e. v U_ q e. v { <. <. ( f ` p ) , ( f ` q ) >. , ( f ` ( p ( +g ` r ) q ) ) >. } |
| 30 | 14 29 | cop | |- <. ( +g ` ndx ) , U_ p e. v U_ q e. v { <. <. ( f ` p ) , ( f ` q ) >. , ( f ` ( p ( +g ` r ) q ) ) >. } >. |
| 31 | cmulr | |- .r |
|
| 32 | 8 31 | cfv | |- ( .r ` ndx ) |
| 33 | 5 31 | cfv | |- ( .r ` r ) |
| 34 | 18 20 33 | co | |- ( p ( .r ` r ) q ) |
| 35 | 34 10 | cfv | |- ( f ` ( p ( .r ` r ) q ) ) |
| 36 | 22 35 | cop | |- <. <. ( f ` p ) , ( f ` q ) >. , ( f ` ( p ( .r ` r ) q ) ) >. |
| 37 | 36 | csn | |- { <. <. ( f ` p ) , ( f ` q ) >. , ( f ` ( p ( .r ` r ) q ) ) >. } |
| 38 | 17 16 37 | ciun | |- U_ q e. v { <. <. ( f ` p ) , ( f ` q ) >. , ( f ` ( p ( .r ` r ) q ) ) >. } |
| 39 | 15 16 38 | ciun | |- U_ p e. v U_ q e. v { <. <. ( f ` p ) , ( f ` q ) >. , ( f ` ( p ( .r ` r ) q ) ) >. } |
| 40 | 32 39 | cop | |- <. ( .r ` ndx ) , U_ p e. v U_ q e. v { <. <. ( f ` p ) , ( f ` q ) >. , ( f ` ( p ( .r ` r ) q ) ) >. } >. |
| 41 | 12 30 40 | ctp | |- { <. ( Base ` ndx ) , ran f >. , <. ( +g ` ndx ) , U_ p e. v U_ q e. v { <. <. ( f ` p ) , ( f ` q ) >. , ( f ` ( p ( +g ` r ) q ) ) >. } >. , <. ( .r ` ndx ) , U_ p e. v U_ q e. v { <. <. ( f ` p ) , ( f ` q ) >. , ( f ` ( p ( .r ` r ) q ) ) >. } >. } |
| 42 | csca | |- Scalar |
|
| 43 | 8 42 | cfv | |- ( Scalar ` ndx ) |
| 44 | 5 42 | cfv | |- ( Scalar ` r ) |
| 45 | 43 44 | cop | |- <. ( Scalar ` ndx ) , ( Scalar ` r ) >. |
| 46 | cvsca | |- .s |
|
| 47 | 8 46 | cfv | |- ( .s ` ndx ) |
| 48 | 44 4 | cfv | |- ( Base ` ( Scalar ` r ) ) |
| 49 | vx | |- x |
|
| 50 | 21 | csn | |- { ( f ` q ) } |
| 51 | 5 46 | cfv | |- ( .s ` r ) |
| 52 | 18 20 51 | co | |- ( p ( .s ` r ) q ) |
| 53 | 52 10 | cfv | |- ( f ` ( p ( .s ` r ) q ) ) |
| 54 | 15 49 48 50 53 | cmpo | |- ( p e. ( Base ` ( Scalar ` r ) ) , x e. { ( f ` q ) } |-> ( f ` ( p ( .s ` r ) q ) ) ) |
| 55 | 17 16 54 | ciun | |- U_ q e. v ( p e. ( Base ` ( Scalar ` r ) ) , x e. { ( f ` q ) } |-> ( f ` ( p ( .s ` r ) q ) ) ) |
| 56 | 47 55 | cop | |- <. ( .s ` ndx ) , U_ q e. v ( p e. ( Base ` ( Scalar ` r ) ) , x e. { ( f ` q ) } |-> ( f ` ( p ( .s ` r ) q ) ) ) >. |
| 57 | cip | |- .i |
|
| 58 | 8 57 | cfv | |- ( .i ` ndx ) |
| 59 | 5 57 | cfv | |- ( .i ` r ) |
| 60 | 18 20 59 | co | |- ( p ( .i ` r ) q ) |
| 61 | 22 60 | cop | |- <. <. ( f ` p ) , ( f ` q ) >. , ( p ( .i ` r ) q ) >. |
| 62 | 61 | csn | |- { <. <. ( f ` p ) , ( f ` q ) >. , ( p ( .i ` r ) q ) >. } |
| 63 | 17 16 62 | ciun | |- U_ q e. v { <. <. ( f ` p ) , ( f ` q ) >. , ( p ( .i ` r ) q ) >. } |
| 64 | 15 16 63 | ciun | |- U_ p e. v U_ q e. v { <. <. ( f ` p ) , ( f ` q ) >. , ( p ( .i ` r ) q ) >. } |
| 65 | 58 64 | cop | |- <. ( .i ` ndx ) , U_ p e. v U_ q e. v { <. <. ( f ` p ) , ( f ` q ) >. , ( p ( .i ` r ) q ) >. } >. |
| 66 | 45 56 65 | ctp | |- { <. ( Scalar ` ndx ) , ( Scalar ` r ) >. , <. ( .s ` ndx ) , U_ q e. v ( p e. ( Base ` ( Scalar ` r ) ) , x e. { ( f ` q ) } |-> ( f ` ( p ( .s ` r ) q ) ) ) >. , <. ( .i ` ndx ) , U_ p e. v U_ q e. v { <. <. ( f ` p ) , ( f ` q ) >. , ( p ( .i ` r ) q ) >. } >. } |
| 67 | 41 66 | cun | |- ( { <. ( Base ` ndx ) , ran f >. , <. ( +g ` ndx ) , U_ p e. v U_ q e. v { <. <. ( f ` p ) , ( f ` q ) >. , ( f ` ( p ( +g ` r ) q ) ) >. } >. , <. ( .r ` ndx ) , U_ p e. v U_ q e. v { <. <. ( f ` p ) , ( f ` q ) >. , ( f ` ( p ( .r ` r ) q ) ) >. } >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` r ) >. , <. ( .s ` ndx ) , U_ q e. v ( p e. ( Base ` ( Scalar ` r ) ) , x e. { ( f ` q ) } |-> ( f ` ( p ( .s ` r ) q ) ) ) >. , <. ( .i ` ndx ) , U_ p e. v U_ q e. v { <. <. ( f ` p ) , ( f ` q ) >. , ( p ( .i ` r ) q ) >. } >. } ) |
| 68 | cts | |- TopSet |
|
| 69 | 8 68 | cfv | |- ( TopSet ` ndx ) |
| 70 | ctopn | |- TopOpen |
|
| 71 | 5 70 | cfv | |- ( TopOpen ` r ) |
| 72 | cqtop | |- qTop |
|
| 73 | 71 10 72 | co | |- ( ( TopOpen ` r ) qTop f ) |
| 74 | 69 73 | cop | |- <. ( TopSet ` ndx ) , ( ( TopOpen ` r ) qTop f ) >. |
| 75 | cple | |- le |
|
| 76 | 8 75 | cfv | |- ( le ` ndx ) |
| 77 | 5 75 | cfv | |- ( le ` r ) |
| 78 | 10 77 | ccom | |- ( f o. ( le ` r ) ) |
| 79 | 10 | ccnv | |- `' f |
| 80 | 78 79 | ccom | |- ( ( f o. ( le ` r ) ) o. `' f ) |
| 81 | 76 80 | cop | |- <. ( le ` ndx ) , ( ( f o. ( le ` r ) ) o. `' f ) >. |
| 82 | cds | |- dist |
|
| 83 | 8 82 | cfv | |- ( dist ` ndx ) |
| 84 | vy | |- y |
|
| 85 | vn | |- n |
|
| 86 | cn | |- NN |
|
| 87 | vg | |- g |
|
| 88 | vh | |- h |
|
| 89 | 16 16 | cxp | |- ( v X. v ) |
| 90 | cmap | |- ^m |
|
| 91 | c1 | |- 1 |
|
| 92 | cfz | |- ... |
|
| 93 | 85 | cv | |- n |
| 94 | 91 93 92 | co | |- ( 1 ... n ) |
| 95 | 89 94 90 | co | |- ( ( v X. v ) ^m ( 1 ... n ) ) |
| 96 | c1st | |- 1st |
|
| 97 | 88 | cv | |- h |
| 98 | 91 97 | cfv | |- ( h ` 1 ) |
| 99 | 98 96 | cfv | |- ( 1st ` ( h ` 1 ) ) |
| 100 | 99 10 | cfv | |- ( f ` ( 1st ` ( h ` 1 ) ) ) |
| 101 | 49 | cv | |- x |
| 102 | 100 101 | wceq | |- ( f ` ( 1st ` ( h ` 1 ) ) ) = x |
| 103 | c2nd | |- 2nd |
|
| 104 | 93 97 | cfv | |- ( h ` n ) |
| 105 | 104 103 | cfv | |- ( 2nd ` ( h ` n ) ) |
| 106 | 105 10 | cfv | |- ( f ` ( 2nd ` ( h ` n ) ) ) |
| 107 | 84 | cv | |- y |
| 108 | 106 107 | wceq | |- ( f ` ( 2nd ` ( h ` n ) ) ) = y |
| 109 | vi | |- i |
|
| 110 | cmin | |- - |
|
| 111 | 93 91 110 | co | |- ( n - 1 ) |
| 112 | 91 111 92 | co | |- ( 1 ... ( n - 1 ) ) |
| 113 | 109 | cv | |- i |
| 114 | 113 97 | cfv | |- ( h ` i ) |
| 115 | 114 103 | cfv | |- ( 2nd ` ( h ` i ) ) |
| 116 | 115 10 | cfv | |- ( f ` ( 2nd ` ( h ` i ) ) ) |
| 117 | caddc | |- + |
|
| 118 | 113 91 117 | co | |- ( i + 1 ) |
| 119 | 118 97 | cfv | |- ( h ` ( i + 1 ) ) |
| 120 | 119 96 | cfv | |- ( 1st ` ( h ` ( i + 1 ) ) ) |
| 121 | 120 10 | cfv | |- ( f ` ( 1st ` ( h ` ( i + 1 ) ) ) ) |
| 122 | 116 121 | wceq | |- ( f ` ( 2nd ` ( h ` i ) ) ) = ( f ` ( 1st ` ( h ` ( i + 1 ) ) ) ) |
| 123 | 122 109 112 | wral | |- A. i e. ( 1 ... ( n - 1 ) ) ( f ` ( 2nd ` ( h ` i ) ) ) = ( f ` ( 1st ` ( h ` ( i + 1 ) ) ) ) |
| 124 | 102 108 123 | w3a | |- ( ( f ` ( 1st ` ( h ` 1 ) ) ) = x /\ ( f ` ( 2nd ` ( h ` n ) ) ) = y /\ A. i e. ( 1 ... ( n - 1 ) ) ( f ` ( 2nd ` ( h ` i ) ) ) = ( f ` ( 1st ` ( h ` ( i + 1 ) ) ) ) ) |
| 125 | 124 88 95 | crab | |- { h e. ( ( v X. v ) ^m ( 1 ... n ) ) | ( ( f ` ( 1st ` ( h ` 1 ) ) ) = x /\ ( f ` ( 2nd ` ( h ` n ) ) ) = y /\ A. i e. ( 1 ... ( n - 1 ) ) ( f ` ( 2nd ` ( h ` i ) ) ) = ( f ` ( 1st ` ( h ` ( i + 1 ) ) ) ) ) } |
| 126 | cxrs | |- RR*s |
|
| 127 | cgsu | |- gsum |
|
| 128 | 5 82 | cfv | |- ( dist ` r ) |
| 129 | 87 | cv | |- g |
| 130 | 128 129 | ccom | |- ( ( dist ` r ) o. g ) |
| 131 | 126 130 127 | co | |- ( RR*s gsum ( ( dist ` r ) o. g ) ) |
| 132 | 87 125 131 | cmpt | |- ( g e. { h e. ( ( v X. v ) ^m ( 1 ... n ) ) | ( ( f ` ( 1st ` ( h ` 1 ) ) ) = x /\ ( f ` ( 2nd ` ( h ` n ) ) ) = y /\ A. i e. ( 1 ... ( n - 1 ) ) ( f ` ( 2nd ` ( h ` i ) ) ) = ( f ` ( 1st ` ( h ` ( i + 1 ) ) ) ) ) } |-> ( RR*s gsum ( ( dist ` r ) o. g ) ) ) |
| 133 | 132 | crn | |- ran ( g e. { h e. ( ( v X. v ) ^m ( 1 ... n ) ) | ( ( f ` ( 1st ` ( h ` 1 ) ) ) = x /\ ( f ` ( 2nd ` ( h ` n ) ) ) = y /\ A. i e. ( 1 ... ( n - 1 ) ) ( f ` ( 2nd ` ( h ` i ) ) ) = ( f ` ( 1st ` ( h ` ( i + 1 ) ) ) ) ) } |-> ( RR*s gsum ( ( dist ` r ) o. g ) ) ) |
| 134 | 85 86 133 | ciun | |- U_ n e. NN ran ( g e. { h e. ( ( v X. v ) ^m ( 1 ... n ) ) | ( ( f ` ( 1st ` ( h ` 1 ) ) ) = x /\ ( f ` ( 2nd ` ( h ` n ) ) ) = y /\ A. i e. ( 1 ... ( n - 1 ) ) ( f ` ( 2nd ` ( h ` i ) ) ) = ( f ` ( 1st ` ( h ` ( i + 1 ) ) ) ) ) } |-> ( RR*s gsum ( ( dist ` r ) o. g ) ) ) |
| 135 | cxr | |- RR* |
|
| 136 | clt | |- < |
|
| 137 | 134 135 136 | cinf | |- inf ( U_ n e. NN ran ( g e. { h e. ( ( v X. v ) ^m ( 1 ... n ) ) | ( ( f ` ( 1st ` ( h ` 1 ) ) ) = x /\ ( f ` ( 2nd ` ( h ` n ) ) ) = y /\ A. i e. ( 1 ... ( n - 1 ) ) ( f ` ( 2nd ` ( h ` i ) ) ) = ( f ` ( 1st ` ( h ` ( i + 1 ) ) ) ) ) } |-> ( RR*s gsum ( ( dist ` r ) o. g ) ) ) , RR* , < ) |
| 138 | 49 84 11 11 137 | cmpo | |- ( x e. ran f , y e. ran f |-> inf ( U_ n e. NN ran ( g e. { h e. ( ( v X. v ) ^m ( 1 ... n ) ) | ( ( f ` ( 1st ` ( h ` 1 ) ) ) = x /\ ( f ` ( 2nd ` ( h ` n ) ) ) = y /\ A. i e. ( 1 ... ( n - 1 ) ) ( f ` ( 2nd ` ( h ` i ) ) ) = ( f ` ( 1st ` ( h ` ( i + 1 ) ) ) ) ) } |-> ( RR*s gsum ( ( dist ` r ) o. g ) ) ) , RR* , < ) ) |
| 139 | 83 138 | cop | |- <. ( dist ` ndx ) , ( x e. ran f , y e. ran f |-> inf ( U_ n e. NN ran ( g e. { h e. ( ( v X. v ) ^m ( 1 ... n ) ) | ( ( f ` ( 1st ` ( h ` 1 ) ) ) = x /\ ( f ` ( 2nd ` ( h ` n ) ) ) = y /\ A. i e. ( 1 ... ( n - 1 ) ) ( f ` ( 2nd ` ( h ` i ) ) ) = ( f ` ( 1st ` ( h ` ( i + 1 ) ) ) ) ) } |-> ( RR*s gsum ( ( dist ` r ) o. g ) ) ) , RR* , < ) ) >. |
| 140 | 74 81 139 | ctp | |- { <. ( TopSet ` ndx ) , ( ( TopOpen ` r ) qTop f ) >. , <. ( le ` ndx ) , ( ( f o. ( le ` r ) ) o. `' f ) >. , <. ( dist ` ndx ) , ( x e. ran f , y e. ran f |-> inf ( U_ n e. NN ran ( g e. { h e. ( ( v X. v ) ^m ( 1 ... n ) ) | ( ( f ` ( 1st ` ( h ` 1 ) ) ) = x /\ ( f ` ( 2nd ` ( h ` n ) ) ) = y /\ A. i e. ( 1 ... ( n - 1 ) ) ( f ` ( 2nd ` ( h ` i ) ) ) = ( f ` ( 1st ` ( h ` ( i + 1 ) ) ) ) ) } |-> ( RR*s gsum ( ( dist ` r ) o. g ) ) ) , RR* , < ) ) >. } |
| 141 | 67 140 | cun | |- ( ( { <. ( Base ` ndx ) , ran f >. , <. ( +g ` ndx ) , U_ p e. v U_ q e. v { <. <. ( f ` p ) , ( f ` q ) >. , ( f ` ( p ( +g ` r ) q ) ) >. } >. , <. ( .r ` ndx ) , U_ p e. v U_ q e. v { <. <. ( f ` p ) , ( f ` q ) >. , ( f ` ( p ( .r ` r ) q ) ) >. } >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` r ) >. , <. ( .s ` ndx ) , U_ q e. v ( p e. ( Base ` ( Scalar ` r ) ) , x e. { ( f ` q ) } |-> ( f ` ( p ( .s ` r ) q ) ) ) >. , <. ( .i ` ndx ) , U_ p e. v U_ q e. v { <. <. ( f ` p ) , ( f ` q ) >. , ( p ( .i ` r ) q ) >. } >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopOpen ` r ) qTop f ) >. , <. ( le ` ndx ) , ( ( f o. ( le ` r ) ) o. `' f ) >. , <. ( dist ` ndx ) , ( x e. ran f , y e. ran f |-> inf ( U_ n e. NN ran ( g e. { h e. ( ( v X. v ) ^m ( 1 ... n ) ) | ( ( f ` ( 1st ` ( h ` 1 ) ) ) = x /\ ( f ` ( 2nd ` ( h ` n ) ) ) = y /\ A. i e. ( 1 ... ( n - 1 ) ) ( f ` ( 2nd ` ( h ` i ) ) ) = ( f ` ( 1st ` ( h ` ( i + 1 ) ) ) ) ) } |-> ( RR*s gsum ( ( dist ` r ) o. g ) ) ) , RR* , < ) ) >. } ) |
| 142 | 7 6 141 | csb | |- [_ ( Base ` r ) / v ]_ ( ( { <. ( Base ` ndx ) , ran f >. , <. ( +g ` ndx ) , U_ p e. v U_ q e. v { <. <. ( f ` p ) , ( f ` q ) >. , ( f ` ( p ( +g ` r ) q ) ) >. } >. , <. ( .r ` ndx ) , U_ p e. v U_ q e. v { <. <. ( f ` p ) , ( f ` q ) >. , ( f ` ( p ( .r ` r ) q ) ) >. } >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` r ) >. , <. ( .s ` ndx ) , U_ q e. v ( p e. ( Base ` ( Scalar ` r ) ) , x e. { ( f ` q ) } |-> ( f ` ( p ( .s ` r ) q ) ) ) >. , <. ( .i ` ndx ) , U_ p e. v U_ q e. v { <. <. ( f ` p ) , ( f ` q ) >. , ( p ( .i ` r ) q ) >. } >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopOpen ` r ) qTop f ) >. , <. ( le ` ndx ) , ( ( f o. ( le ` r ) ) o. `' f ) >. , <. ( dist ` ndx ) , ( x e. ran f , y e. ran f |-> inf ( U_ n e. NN ran ( g e. { h e. ( ( v X. v ) ^m ( 1 ... n ) ) | ( ( f ` ( 1st ` ( h ` 1 ) ) ) = x /\ ( f ` ( 2nd ` ( h ` n ) ) ) = y /\ A. i e. ( 1 ... ( n - 1 ) ) ( f ` ( 2nd ` ( h ` i ) ) ) = ( f ` ( 1st ` ( h ` ( i + 1 ) ) ) ) ) } |-> ( RR*s gsum ( ( dist ` r ) o. g ) ) ) , RR* , < ) ) >. } ) |
| 143 | 1 3 2 2 142 | cmpo | |- ( f e. _V , r e. _V |-> [_ ( Base ` r ) / v ]_ ( ( { <. ( Base ` ndx ) , ran f >. , <. ( +g ` ndx ) , U_ p e. v U_ q e. v { <. <. ( f ` p ) , ( f ` q ) >. , ( f ` ( p ( +g ` r ) q ) ) >. } >. , <. ( .r ` ndx ) , U_ p e. v U_ q e. v { <. <. ( f ` p ) , ( f ` q ) >. , ( f ` ( p ( .r ` r ) q ) ) >. } >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` r ) >. , <. ( .s ` ndx ) , U_ q e. v ( p e. ( Base ` ( Scalar ` r ) ) , x e. { ( f ` q ) } |-> ( f ` ( p ( .s ` r ) q ) ) ) >. , <. ( .i ` ndx ) , U_ p e. v U_ q e. v { <. <. ( f ` p ) , ( f ` q ) >. , ( p ( .i ` r ) q ) >. } >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopOpen ` r ) qTop f ) >. , <. ( le ` ndx ) , ( ( f o. ( le ` r ) ) o. `' f ) >. , <. ( dist ` ndx ) , ( x e. ran f , y e. ran f |-> inf ( U_ n e. NN ran ( g e. { h e. ( ( v X. v ) ^m ( 1 ... n ) ) | ( ( f ` ( 1st ` ( h ` 1 ) ) ) = x /\ ( f ` ( 2nd ` ( h ` n ) ) ) = y /\ A. i e. ( 1 ... ( n - 1 ) ) ( f ` ( 2nd ` ( h ` i ) ) ) = ( f ` ( 1st ` ( h ` ( i + 1 ) ) ) ) ) } |-> ( RR*s gsum ( ( dist ` r ) o. g ) ) ) , RR* , < ) ) >. } ) ) |
| 144 | 0 143 | wceq | |- "s = ( f e. _V , r e. _V |-> [_ ( Base ` r ) / v ]_ ( ( { <. ( Base ` ndx ) , ran f >. , <. ( +g ` ndx ) , U_ p e. v U_ q e. v { <. <. ( f ` p ) , ( f ` q ) >. , ( f ` ( p ( +g ` r ) q ) ) >. } >. , <. ( .r ` ndx ) , U_ p e. v U_ q e. v { <. <. ( f ` p ) , ( f ` q ) >. , ( f ` ( p ( .r ` r ) q ) ) >. } >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` r ) >. , <. ( .s ` ndx ) , U_ q e. v ( p e. ( Base ` ( Scalar ` r ) ) , x e. { ( f ` q ) } |-> ( f ` ( p ( .s ` r ) q ) ) ) >. , <. ( .i ` ndx ) , U_ p e. v U_ q e. v { <. <. ( f ` p ) , ( f ` q ) >. , ( p ( .i ` r ) q ) >. } >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopOpen ` r ) qTop f ) >. , <. ( le ` ndx ) , ( ( f o. ( le ` r ) ) o. `' f ) >. , <. ( dist ` ndx ) , ( x e. ran f , y e. ran f |-> inf ( U_ n e. NN ran ( g e. { h e. ( ( v X. v ) ^m ( 1 ... n ) ) | ( ( f ` ( 1st ` ( h ` 1 ) ) ) = x /\ ( f ` ( 2nd ` ( h ` n ) ) ) = y /\ A. i e. ( 1 ... ( n - 1 ) ) ( f ` ( 2nd ` ( h ` i ) ) ) = ( f ` ( 1st ` ( h ` ( i + 1 ) ) ) ) ) } |-> ( RR*s gsum ( ( dist ` r ) o. g ) ) ) , RR* , < ) ) >. } ) ) |