Description: Define the induced metric on a normed complex vector space. (Contributed by NM, 11-Sep-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-ims | |- IndMet = ( u e. NrmCVec |-> ( ( normCV ` u ) o. ( -v ` u ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 0 | cims | |- IndMet | |
| 1 | vu | |- u | |
| 2 | cnv | |- NrmCVec | |
| 3 | cnmcv | |- normCV | |
| 4 | 1 | cv | |- u | 
| 5 | 4 3 | cfv | |- ( normCV ` u ) | 
| 6 | cnsb | |- -v | |
| 7 | 4 6 | cfv | |- ( -v ` u ) | 
| 8 | 5 7 | ccom | |- ( ( normCV ` u ) o. ( -v ` u ) ) | 
| 9 | 1 2 8 | cmpt | |- ( u e. NrmCVec |-> ( ( normCV ` u ) o. ( -v ` u ) ) ) | 
| 10 | 0 9 | wceq | |- IndMet = ( u e. NrmCVec |-> ( ( normCV ` u ) o. ( -v ` u ) ) ) |