Description: Define the induced metric on a normed complex vector space. (Contributed by NM, 11-Sep-2007) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | df-ims | |- IndMet = ( u e. NrmCVec |-> ( ( normCV ` u ) o. ( -v ` u ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cims | |- IndMet |
|
1 | vu | |- u |
|
2 | cnv | |- NrmCVec |
|
3 | cnmcv | |- normCV |
|
4 | 1 | cv | |- u |
5 | 4 3 | cfv | |- ( normCV ` u ) |
6 | cnsb | |- -v |
|
7 | 4 6 | cfv | |- ( -v ` u ) |
8 | 5 7 | ccom | |- ( ( normCV ` u ) o. ( -v ` u ) ) |
9 | 1 2 8 | cmpt | |- ( u e. NrmCVec |-> ( ( normCV ` u ) o. ( -v ` u ) ) ) |
10 | 0 9 | wceq | |- IndMet = ( u e. NrmCVec |-> ( ( normCV ` u ) o. ( -v ` u ) ) ) |