Metamath Proof Explorer


Definition df-ina

Description: An ordinal is strongly inaccessible iff it is a regular strong limit cardinal, which is to say that it dominates the powersets of every smaller ordinal. (Contributed by Mario Carneiro, 22-Jun-2013)

Ref Expression
Assertion df-ina
|- Inacc = { x | ( x =/= (/) /\ ( cf ` x ) = x /\ A. y e. x ~P y ~< x ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cina
 |-  Inacc
1 vx
 |-  x
2 1 cv
 |-  x
3 c0
 |-  (/)
4 2 3 wne
 |-  x =/= (/)
5 ccf
 |-  cf
6 2 5 cfv
 |-  ( cf ` x )
7 6 2 wceq
 |-  ( cf ` x ) = x
8 vy
 |-  y
9 8 cv
 |-  y
10 9 cpw
 |-  ~P y
11 csdm
 |-  ~<
12 10 2 11 wbr
 |-  ~P y ~< x
13 12 8 2 wral
 |-  A. y e. x ~P y ~< x
14 4 7 13 w3a
 |-  ( x =/= (/) /\ ( cf ` x ) = x /\ A. y e. x ~P y ~< x )
15 14 1 cab
 |-  { x | ( x =/= (/) /\ ( cf ` x ) = x /\ A. y e. x ~P y ~< x ) }
16 0 15 wceq
 |-  Inacc = { x | ( x =/= (/) /\ ( cf ` x ) = x /\ A. y e. x ~P y ~< x ) }