Description: An ordinal is strongly inaccessible iff it is a regular strong limit cardinal, which is to say that it dominates the powersets of every smaller ordinal. (Contributed by Mario Carneiro, 22-Jun-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-ina | |- Inacc = { x | ( x =/= (/) /\ ( cf ` x ) = x /\ A. y e. x ~P y ~< x ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cina | |- Inacc |
|
| 1 | vx | |- x |
|
| 2 | 1 | cv | |- x |
| 3 | c0 | |- (/) |
|
| 4 | 2 3 | wne | |- x =/= (/) |
| 5 | ccf | |- cf |
|
| 6 | 2 5 | cfv | |- ( cf ` x ) |
| 7 | 6 2 | wceq | |- ( cf ` x ) = x |
| 8 | vy | |- y |
|
| 9 | 8 | cv | |- y |
| 10 | 9 | cpw | |- ~P y |
| 11 | csdm | |- ~< |
|
| 12 | 10 2 11 | wbr | |- ~P y ~< x |
| 13 | 12 8 2 | wral | |- A. y e. x ~P y ~< x |
| 14 | 4 7 13 | w3a | |- ( x =/= (/) /\ ( cf ` x ) = x /\ A. y e. x ~P y ~< x ) |
| 15 | 14 1 | cab | |- { x | ( x =/= (/) /\ ( cf ` x ) = x /\ A. y e. x ~P y ~< x ) } |
| 16 | 0 15 | wceq | |- Inacc = { x | ( x =/= (/) /\ ( cf ` x ) = x /\ A. y e. x ~P y ~< x ) } |