Metamath Proof Explorer


Definition df-inr

Description: Right injection of a disjoint union. (Contributed by Mario Carneiro, 21-Jun-2022)

Ref Expression
Assertion df-inr
|- inr = ( x e. _V |-> <. 1o , x >. )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cinr
 |-  inr
1 vx
 |-  x
2 cvv
 |-  _V
3 c1o
 |-  1o
4 1 cv
 |-  x
5 3 4 cop
 |-  <. 1o , x >.
6 1 2 5 cmpt
 |-  ( x e. _V |-> <. 1o , x >. )
7 0 6 wceq
 |-  inr = ( x e. _V |-> <. 1o , x >. )