Database
BASIC CATEGORY THEORY
Categories
Sections, inverses, isomorphisms
df-inv
Metamath Proof Explorer
Description: The inverse relation in a category. Given arrows f : X --> Y and
g : Y --> X , we say g Inv f , that is, g is an inverse of
f , if g is a section of f and f is a section of g .
Definition 3.8 of Adamek p. 28. (Contributed by FL , 22-Dec-2008)
(Revised by Mario Carneiro , 2-Jan-2017)
Ref
Expression
Assertion
df-inv
|- Inv = ( c e. Cat |-> ( x e. ( Base ` c ) , y e. ( Base ` c ) |-> ( ( x ( Sect ` c ) y ) i^i `' ( y ( Sect ` c ) x ) ) ) )
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
cinv
|- Inv
1
vc
|- c
2
ccat
|- Cat
3
vx
|- x
4
cbs
|- Base
5
1
cv
|- c
6
5 4
cfv
|- ( Base ` c )
7
vy
|- y
8
3
cv
|- x
9
csect
|- Sect
10
5 9
cfv
|- ( Sect ` c )
11
7
cv
|- y
12
8 11 10
co
|- ( x ( Sect ` c ) y )
13
11 8 10
co
|- ( y ( Sect ` c ) x )
14
13
ccnv
|- `' ( y ( Sect ` c ) x )
15
12 14
cin
|- ( ( x ( Sect ` c ) y ) i^i `' ( y ( Sect ` c ) x ) )
16
3 7 6 6 15
cmpo
|- ( x e. ( Base ` c ) , y e. ( Base ` c ) |-> ( ( x ( Sect ` c ) y ) i^i `' ( y ( Sect ` c ) x ) ) )
17
1 2 16
cmpt
|- ( c e. Cat |-> ( x e. ( Base ` c ) , y e. ( Base ` c ) |-> ( ( x ( Sect ` c ) y ) i^i `' ( y ( Sect ` c ) x ) ) ) )
18
0 17
wceq
|- Inv = ( c e. Cat |-> ( x e. ( Base ` c ) , y e. ( Base ` c ) |-> ( ( x ( Sect ` c ) y ) i^i `' ( y ( Sect ` c ) x ) ) ) )