Description: For any family of sets, define the poset of that family ordered by inclusion. See ipobas , ipolerval , and ipole for its contract.
EDITORIAL: I'm not thrilled with the name. Any suggestions? (Contributed by Stefan O'Rear, 30-Jan-2015) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-ipo | |- toInc = ( f e. _V |-> [_ { <. x , y >. | ( { x , y } C_ f /\ x C_ y ) } / o ]_ ( { <. ( Base ` ndx ) , f >. , <. ( TopSet ` ndx ) , ( ordTop ` o ) >. } u. { <. ( le ` ndx ) , o >. , <. ( oc ` ndx ) , ( x e. f |-> U. { y e. f | ( y i^i x ) = (/) } ) >. } ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 0 | cipo | |- toInc | |
| 1 | vf | |- f | |
| 2 | cvv | |- _V | |
| 3 | vx | |- x | |
| 4 | vy | |- y | |
| 5 | 3 | cv | |- x | 
| 6 | 4 | cv | |- y | 
| 7 | 5 6 | cpr |  |-  { x , y } | 
| 8 | 1 | cv | |- f | 
| 9 | 7 8 | wss |  |-  { x , y } C_ f | 
| 10 | 5 6 | wss | |- x C_ y | 
| 11 | 9 10 | wa |  |-  ( { x , y } C_ f /\ x C_ y ) | 
| 12 | 11 3 4 | copab |  |-  { <. x , y >. | ( { x , y } C_ f /\ x C_ y ) } | 
| 13 | vo | |- o | |
| 14 | cbs | |- Base | |
| 15 | cnx | |- ndx | |
| 16 | 15 14 | cfv | |- ( Base ` ndx ) | 
| 17 | 16 8 | cop | |- <. ( Base ` ndx ) , f >. | 
| 18 | cts | |- TopSet | |
| 19 | 15 18 | cfv | |- ( TopSet ` ndx ) | 
| 20 | cordt | |- ordTop | |
| 21 | 13 | cv | |- o | 
| 22 | 21 20 | cfv | |- ( ordTop ` o ) | 
| 23 | 19 22 | cop | |- <. ( TopSet ` ndx ) , ( ordTop ` o ) >. | 
| 24 | 17 23 | cpr |  |-  { <. ( Base ` ndx ) , f >. , <. ( TopSet ` ndx ) , ( ordTop ` o ) >. } | 
| 25 | cple | |- le | |
| 26 | 15 25 | cfv | |- ( le ` ndx ) | 
| 27 | 26 21 | cop | |- <. ( le ` ndx ) , o >. | 
| 28 | coc | |- oc | |
| 29 | 15 28 | cfv | |- ( oc ` ndx ) | 
| 30 | 6 5 | cin | |- ( y i^i x ) | 
| 31 | c0 | |- (/) | |
| 32 | 30 31 | wceq | |- ( y i^i x ) = (/) | 
| 33 | 32 4 8 | crab |  |-  { y e. f | ( y i^i x ) = (/) } | 
| 34 | 33 | cuni |  |-  U. { y e. f | ( y i^i x ) = (/) } | 
| 35 | 3 8 34 | cmpt |  |-  ( x e. f |-> U. { y e. f | ( y i^i x ) = (/) } ) | 
| 36 | 29 35 | cop |  |-  <. ( oc ` ndx ) , ( x e. f |-> U. { y e. f | ( y i^i x ) = (/) } ) >. | 
| 37 | 27 36 | cpr |  |-  { <. ( le ` ndx ) , o >. , <. ( oc ` ndx ) , ( x e. f |-> U. { y e. f | ( y i^i x ) = (/) } ) >. } | 
| 38 | 24 37 | cun |  |-  ( { <. ( Base ` ndx ) , f >. , <. ( TopSet ` ndx ) , ( ordTop ` o ) >. } u. { <. ( le ` ndx ) , o >. , <. ( oc ` ndx ) , ( x e. f |-> U. { y e. f | ( y i^i x ) = (/) } ) >. } ) | 
| 39 | 13 12 38 | csb |  |-  [_ { <. x , y >. | ( { x , y } C_ f /\ x C_ y ) } / o ]_ ( { <. ( Base ` ndx ) , f >. , <. ( TopSet ` ndx ) , ( ordTop ` o ) >. } u. { <. ( le ` ndx ) , o >. , <. ( oc ` ndx ) , ( x e. f |-> U. { y e. f | ( y i^i x ) = (/) } ) >. } ) | 
| 40 | 1 2 39 | cmpt |  |-  ( f e. _V |-> [_ { <. x , y >. | ( { x , y } C_ f /\ x C_ y ) } / o ]_ ( { <. ( Base ` ndx ) , f >. , <. ( TopSet ` ndx ) , ( ordTop ` o ) >. } u. { <. ( le ` ndx ) , o >. , <. ( oc ` ndx ) , ( x e. f |-> U. { y e. f | ( y i^i x ) = (/) } ) >. } ) ) | 
| 41 | 0 40 | wceq |  |-  toInc = ( f e. _V |-> [_ { <. x , y >. | ( { x , y } C_ f /\ x C_ y ) } / o ]_ ( { <. ( Base ` ndx ) , f >. , <. ( TopSet ` ndx ) , ( ordTop ` o ) >. } u. { <. ( le ` ndx ) , o >. , <. ( oc ` ndx ) , ( x e. f |-> U. { y e. f | ( y i^i x ) = (/) } ) >. } ) ) |