| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cir |
|- Irred |
| 1 |
|
vw |
|- w |
| 2 |
|
cvv |
|- _V |
| 3 |
|
cbs |
|- Base |
| 4 |
1
|
cv |
|- w |
| 5 |
4 3
|
cfv |
|- ( Base ` w ) |
| 6 |
|
cui |
|- Unit |
| 7 |
4 6
|
cfv |
|- ( Unit ` w ) |
| 8 |
5 7
|
cdif |
|- ( ( Base ` w ) \ ( Unit ` w ) ) |
| 9 |
|
vb |
|- b |
| 10 |
|
vz |
|- z |
| 11 |
9
|
cv |
|- b |
| 12 |
|
vx |
|- x |
| 13 |
|
vy |
|- y |
| 14 |
12
|
cv |
|- x |
| 15 |
|
cmulr |
|- .r |
| 16 |
4 15
|
cfv |
|- ( .r ` w ) |
| 17 |
13
|
cv |
|- y |
| 18 |
14 17 16
|
co |
|- ( x ( .r ` w ) y ) |
| 19 |
10
|
cv |
|- z |
| 20 |
18 19
|
wne |
|- ( x ( .r ` w ) y ) =/= z |
| 21 |
20 13 11
|
wral |
|- A. y e. b ( x ( .r ` w ) y ) =/= z |
| 22 |
21 12 11
|
wral |
|- A. x e. b A. y e. b ( x ( .r ` w ) y ) =/= z |
| 23 |
22 10 11
|
crab |
|- { z e. b | A. x e. b A. y e. b ( x ( .r ` w ) y ) =/= z } |
| 24 |
9 8 23
|
csb |
|- [_ ( ( Base ` w ) \ ( Unit ` w ) ) / b ]_ { z e. b | A. x e. b A. y e. b ( x ( .r ` w ) y ) =/= z } |
| 25 |
1 2 24
|
cmpt |
|- ( w e. _V |-> [_ ( ( Base ` w ) \ ( Unit ` w ) ) / b ]_ { z e. b | A. x e. b A. y e. b ( x ( .r ` w ) y ) =/= z } ) |
| 26 |
0 25
|
wceq |
|- Irred = ( w e. _V |-> [_ ( ( Base ` w ) \ ( Unit ` w ) ) / b ]_ { z e. b | A. x e. b A. y e. b ( x ( .r ` w ) y ) =/= z } ) |