Metamath Proof Explorer


Definition df-ismty

Description: Define a function which takes two metric spaces and returns the set of isometries between the spaces. An isometry is a bijection which preserves distance. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Assertion df-ismty
|- Ismty = ( m e. U. ran *Met , n e. U. ran *Met |-> { f | ( f : dom dom m -1-1-onto-> dom dom n /\ A. x e. dom dom m A. y e. dom dom m ( x m y ) = ( ( f ` x ) n ( f ` y ) ) ) } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cismty
 |-  Ismty
1 vm
 |-  m
2 cxmet
 |-  *Met
3 2 crn
 |-  ran *Met
4 3 cuni
 |-  U. ran *Met
5 vn
 |-  n
6 vf
 |-  f
7 6 cv
 |-  f
8 1 cv
 |-  m
9 8 cdm
 |-  dom m
10 9 cdm
 |-  dom dom m
11 5 cv
 |-  n
12 11 cdm
 |-  dom n
13 12 cdm
 |-  dom dom n
14 10 13 7 wf1o
 |-  f : dom dom m -1-1-onto-> dom dom n
15 vx
 |-  x
16 vy
 |-  y
17 15 cv
 |-  x
18 16 cv
 |-  y
19 17 18 8 co
 |-  ( x m y )
20 17 7 cfv
 |-  ( f ` x )
21 18 7 cfv
 |-  ( f ` y )
22 20 21 11 co
 |-  ( ( f ` x ) n ( f ` y ) )
23 19 22 wceq
 |-  ( x m y ) = ( ( f ` x ) n ( f ` y ) )
24 23 16 10 wral
 |-  A. y e. dom dom m ( x m y ) = ( ( f ` x ) n ( f ` y ) )
25 24 15 10 wral
 |-  A. x e. dom dom m A. y e. dom dom m ( x m y ) = ( ( f ` x ) n ( f ` y ) )
26 14 25 wa
 |-  ( f : dom dom m -1-1-onto-> dom dom n /\ A. x e. dom dom m A. y e. dom dom m ( x m y ) = ( ( f ` x ) n ( f ` y ) ) )
27 26 6 cab
 |-  { f | ( f : dom dom m -1-1-onto-> dom dom n /\ A. x e. dom dom m A. y e. dom dom m ( x m y ) = ( ( f ` x ) n ( f ` y ) ) ) }
28 1 5 4 4 27 cmpo
 |-  ( m e. U. ran *Met , n e. U. ran *Met |-> { f | ( f : dom dom m -1-1-onto-> dom dom n /\ A. x e. dom dom m A. y e. dom dom m ( x m y ) = ( ( f ` x ) n ( f ` y ) ) ) } )
29 0 28 wceq
 |-  Ismty = ( m e. U. ran *Met , n e. U. ran *Met |-> { f | ( f : dom dom m -1-1-onto-> dom dom n /\ A. x e. dom dom m A. y e. dom dom m ( x m y ) = ( ( f ` x ) n ( f ` y ) ) ) } )