Metamath Proof Explorer


Definition df-iso

Description: Function returning the isomorphisms of the category c . Definition 3.8 of Adamek p. 28, and definition in Lang p. 54. (Contributed by FL, 9-Jun-2014) (Revised by Mario Carneiro, 2-Jan-2017)

Ref Expression
Assertion df-iso
|- Iso = ( c e. Cat |-> ( ( x e. _V |-> dom x ) o. ( Inv ` c ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 ciso
 |-  Iso
1 vc
 |-  c
2 ccat
 |-  Cat
3 vx
 |-  x
4 cvv
 |-  _V
5 3 cv
 |-  x
6 5 cdm
 |-  dom x
7 3 4 6 cmpt
 |-  ( x e. _V |-> dom x )
8 cinv
 |-  Inv
9 1 cv
 |-  c
10 9 8 cfv
 |-  ( Inv ` c )
11 7 10 ccom
 |-  ( ( x e. _V |-> dom x ) o. ( Inv ` c ) )
12 1 2 11 cmpt
 |-  ( c e. Cat |-> ( ( x e. _V |-> dom x ) o. ( Inv ` c ) ) )
13 0 12 wceq
 |-  Iso = ( c e. Cat |-> ( ( x e. _V |-> dom x ) o. ( Inv ` c ) ) )