Description: Function returning the isomorphisms of the category c . Definition 3.8 of Adamek p. 28, and definition in Lang p. 54. (Contributed by FL, 9-Jun-2014) (Revised by Mario Carneiro, 2-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | df-iso | |- Iso = ( c e. Cat |-> ( ( x e. _V |-> dom x ) o. ( Inv ` c ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | ciso | |- Iso |
|
1 | vc | |- c |
|
2 | ccat | |- Cat |
|
3 | vx | |- x |
|
4 | cvv | |- _V |
|
5 | 3 | cv | |- x |
6 | 5 | cdm | |- dom x |
7 | 3 4 6 | cmpt | |- ( x e. _V |-> dom x ) |
8 | cinv | |- Inv |
|
9 | 1 | cv | |- c |
10 | 9 8 | cfv | |- ( Inv ` c ) |
11 | 7 10 | ccom | |- ( ( x e. _V |-> dom x ) o. ( Inv ` c ) ) |
12 | 1 2 11 | cmpt | |- ( c e. Cat |-> ( ( x e. _V |-> dom x ) o. ( Inv ` c ) ) ) |
13 | 0 12 | wceq | |- Iso = ( c e. Cat |-> ( ( x e. _V |-> dom x ) o. ( Inv ` c ) ) ) |