| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cH |
|- H |
| 1 |
|
cR |
|- R |
| 2 |
|
cS |
|- S |
| 3 |
|
cA |
|- A |
| 4 |
|
cB |
|- B |
| 5 |
3 4 1 2 0
|
wiso |
|- H Isom R , S ( A , B ) |
| 6 |
3 4 0
|
wf1o |
|- H : A -1-1-onto-> B |
| 7 |
|
vx |
|- x |
| 8 |
|
vy |
|- y |
| 9 |
7
|
cv |
|- x |
| 10 |
8
|
cv |
|- y |
| 11 |
9 10 1
|
wbr |
|- x R y |
| 12 |
9 0
|
cfv |
|- ( H ` x ) |
| 13 |
10 0
|
cfv |
|- ( H ` y ) |
| 14 |
12 13 2
|
wbr |
|- ( H ` x ) S ( H ` y ) |
| 15 |
11 14
|
wb |
|- ( x R y <-> ( H ` x ) S ( H ` y ) ) |
| 16 |
15 8 3
|
wral |
|- A. y e. A ( x R y <-> ( H ` x ) S ( H ` y ) ) |
| 17 |
16 7 3
|
wral |
|- A. x e. A A. y e. A ( x R y <-> ( H ` x ) S ( H ` y ) ) |
| 18 |
6 17
|
wa |
|- ( H : A -1-1-onto-> B /\ A. x e. A A. y e. A ( x R y <-> ( H ` x ) S ( H ` y ) ) ) |
| 19 |
5 18
|
wb |
|- ( H Isom R , S ( A , B ) <-> ( H : A -1-1-onto-> B /\ A. x e. A A. y e. A ( x R y <-> ( H ` x ) S ( H ` y ) ) ) ) |