Step |
Hyp |
Ref |
Expression |
0 |
|
cH |
|- H |
1 |
|
cR |
|- R |
2 |
|
cS |
|- S |
3 |
|
cA |
|- A |
4 |
|
cB |
|- B |
5 |
3 4 1 2 0
|
wiso |
|- H Isom R , S ( A , B ) |
6 |
3 4 0
|
wf1o |
|- H : A -1-1-onto-> B |
7 |
|
vx |
|- x |
8 |
|
vy |
|- y |
9 |
7
|
cv |
|- x |
10 |
8
|
cv |
|- y |
11 |
9 10 1
|
wbr |
|- x R y |
12 |
9 0
|
cfv |
|- ( H ` x ) |
13 |
10 0
|
cfv |
|- ( H ` y ) |
14 |
12 13 2
|
wbr |
|- ( H ` x ) S ( H ` y ) |
15 |
11 14
|
wb |
|- ( x R y <-> ( H ` x ) S ( H ` y ) ) |
16 |
15 8 3
|
wral |
|- A. y e. A ( x R y <-> ( H ` x ) S ( H ` y ) ) |
17 |
16 7 3
|
wral |
|- A. x e. A A. y e. A ( x R y <-> ( H ` x ) S ( H ` y ) ) |
18 |
6 17
|
wa |
|- ( H : A -1-1-onto-> B /\ A. x e. A A. y e. A ( x R y <-> ( H ` x ) S ( H ` y ) ) ) |
19 |
5 18
|
wb |
|- ( H Isom R , S ( A , B ) <-> ( H : A -1-1-onto-> B /\ A. x e. A A. y e. A ( x R y <-> ( H ` x ) S ( H ` y ) ) ) ) |