Step |
Hyp |
Ref |
Expression |
0 |
|
cA |
|- A |
1 |
|
cB |
|- B |
2 |
|
vx |
|- x |
3 |
2 0 1
|
citg |
|- S. A B _d x |
4 |
|
vk |
|- k |
5 |
|
cc0 |
|- 0 |
6 |
|
cfz |
|- ... |
7 |
|
c3 |
|- 3 |
8 |
5 7 6
|
co |
|- ( 0 ... 3 ) |
9 |
|
ci |
|- _i |
10 |
|
cexp |
|- ^ |
11 |
4
|
cv |
|- k |
12 |
9 11 10
|
co |
|- ( _i ^ k ) |
13 |
|
cmul |
|- x. |
14 |
|
citg2 |
|- S.2 |
15 |
|
cr |
|- RR |
16 |
|
cre |
|- Re |
17 |
|
cdiv |
|- / |
18 |
1 12 17
|
co |
|- ( B / ( _i ^ k ) ) |
19 |
18 16
|
cfv |
|- ( Re ` ( B / ( _i ^ k ) ) ) |
20 |
|
vy |
|- y |
21 |
2
|
cv |
|- x |
22 |
21 0
|
wcel |
|- x e. A |
23 |
|
cle |
|- <_ |
24 |
20
|
cv |
|- y |
25 |
5 24 23
|
wbr |
|- 0 <_ y |
26 |
22 25
|
wa |
|- ( x e. A /\ 0 <_ y ) |
27 |
26 24 5
|
cif |
|- if ( ( x e. A /\ 0 <_ y ) , y , 0 ) |
28 |
20 19 27
|
csb |
|- [_ ( Re ` ( B / ( _i ^ k ) ) ) / y ]_ if ( ( x e. A /\ 0 <_ y ) , y , 0 ) |
29 |
2 15 28
|
cmpt |
|- ( x e. RR |-> [_ ( Re ` ( B / ( _i ^ k ) ) ) / y ]_ if ( ( x e. A /\ 0 <_ y ) , y , 0 ) ) |
30 |
29 14
|
cfv |
|- ( S.2 ` ( x e. RR |-> [_ ( Re ` ( B / ( _i ^ k ) ) ) / y ]_ if ( ( x e. A /\ 0 <_ y ) , y , 0 ) ) ) |
31 |
12 30 13
|
co |
|- ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> [_ ( Re ` ( B / ( _i ^ k ) ) ) / y ]_ if ( ( x e. A /\ 0 <_ y ) , y , 0 ) ) ) ) |
32 |
8 31 4
|
csu |
|- sum_ k e. ( 0 ... 3 ) ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> [_ ( Re ` ( B / ( _i ^ k ) ) ) / y ]_ if ( ( x e. A /\ 0 <_ y ) , y , 0 ) ) ) ) |
33 |
3 32
|
wceq |
|- S. A B _d x = sum_ k e. ( 0 ... 3 ) ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> [_ ( Re ` ( B / ( _i ^ k ) ) ) / y ]_ if ( ( x e. A /\ 0 <_ y ) , y , 0 ) ) ) ) |