| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cA |
|- A |
| 1 |
|
cB |
|- B |
| 2 |
|
vx |
|- x |
| 3 |
2 0 1
|
citg |
|- S. A B _d x |
| 4 |
|
vk |
|- k |
| 5 |
|
cc0 |
|- 0 |
| 6 |
|
cfz |
|- ... |
| 7 |
|
c3 |
|- 3 |
| 8 |
5 7 6
|
co |
|- ( 0 ... 3 ) |
| 9 |
|
ci |
|- _i |
| 10 |
|
cexp |
|- ^ |
| 11 |
4
|
cv |
|- k |
| 12 |
9 11 10
|
co |
|- ( _i ^ k ) |
| 13 |
|
cmul |
|- x. |
| 14 |
|
citg2 |
|- S.2 |
| 15 |
|
cr |
|- RR |
| 16 |
|
cre |
|- Re |
| 17 |
|
cdiv |
|- / |
| 18 |
1 12 17
|
co |
|- ( B / ( _i ^ k ) ) |
| 19 |
18 16
|
cfv |
|- ( Re ` ( B / ( _i ^ k ) ) ) |
| 20 |
|
vy |
|- y |
| 21 |
2
|
cv |
|- x |
| 22 |
21 0
|
wcel |
|- x e. A |
| 23 |
|
cle |
|- <_ |
| 24 |
20
|
cv |
|- y |
| 25 |
5 24 23
|
wbr |
|- 0 <_ y |
| 26 |
22 25
|
wa |
|- ( x e. A /\ 0 <_ y ) |
| 27 |
26 24 5
|
cif |
|- if ( ( x e. A /\ 0 <_ y ) , y , 0 ) |
| 28 |
20 19 27
|
csb |
|- [_ ( Re ` ( B / ( _i ^ k ) ) ) / y ]_ if ( ( x e. A /\ 0 <_ y ) , y , 0 ) |
| 29 |
2 15 28
|
cmpt |
|- ( x e. RR |-> [_ ( Re ` ( B / ( _i ^ k ) ) ) / y ]_ if ( ( x e. A /\ 0 <_ y ) , y , 0 ) ) |
| 30 |
29 14
|
cfv |
|- ( S.2 ` ( x e. RR |-> [_ ( Re ` ( B / ( _i ^ k ) ) ) / y ]_ if ( ( x e. A /\ 0 <_ y ) , y , 0 ) ) ) |
| 31 |
12 30 13
|
co |
|- ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> [_ ( Re ` ( B / ( _i ^ k ) ) ) / y ]_ if ( ( x e. A /\ 0 <_ y ) , y , 0 ) ) ) ) |
| 32 |
8 31 4
|
csu |
|- sum_ k e. ( 0 ... 3 ) ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> [_ ( Re ` ( B / ( _i ^ k ) ) ) / y ]_ if ( ( x e. A /\ 0 <_ y ) , y , 0 ) ) ) ) |
| 33 |
3 32
|
wceq |
|- S. A B _d x = sum_ k e. ( 0 ... 3 ) ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> [_ ( Re ` ( B / ( _i ^ k ) ) ) / y ]_ if ( ( x e. A /\ 0 <_ y ) , y , 0 ) ) ) ) |