Step |
Hyp |
Ref |
Expression |
0 |
|
citg1 |
|- S.1 |
1 |
|
vf |
|- f |
2 |
|
vg |
|- g |
3 |
|
cmbf |
|- MblFn |
4 |
2
|
cv |
|- g |
5 |
|
cr |
|- RR |
6 |
5 5 4
|
wf |
|- g : RR --> RR |
7 |
4
|
crn |
|- ran g |
8 |
|
cfn |
|- Fin |
9 |
7 8
|
wcel |
|- ran g e. Fin |
10 |
|
cvol |
|- vol |
11 |
4
|
ccnv |
|- `' g |
12 |
|
cc0 |
|- 0 |
13 |
12
|
csn |
|- { 0 } |
14 |
5 13
|
cdif |
|- ( RR \ { 0 } ) |
15 |
11 14
|
cima |
|- ( `' g " ( RR \ { 0 } ) ) |
16 |
15 10
|
cfv |
|- ( vol ` ( `' g " ( RR \ { 0 } ) ) ) |
17 |
16 5
|
wcel |
|- ( vol ` ( `' g " ( RR \ { 0 } ) ) ) e. RR |
18 |
6 9 17
|
w3a |
|- ( g : RR --> RR /\ ran g e. Fin /\ ( vol ` ( `' g " ( RR \ { 0 } ) ) ) e. RR ) |
19 |
18 2 3
|
crab |
|- { g e. MblFn | ( g : RR --> RR /\ ran g e. Fin /\ ( vol ` ( `' g " ( RR \ { 0 } ) ) ) e. RR ) } |
20 |
|
vx |
|- x |
21 |
1
|
cv |
|- f |
22 |
21
|
crn |
|- ran f |
23 |
22 13
|
cdif |
|- ( ran f \ { 0 } ) |
24 |
20
|
cv |
|- x |
25 |
|
cmul |
|- x. |
26 |
21
|
ccnv |
|- `' f |
27 |
24
|
csn |
|- { x } |
28 |
26 27
|
cima |
|- ( `' f " { x } ) |
29 |
28 10
|
cfv |
|- ( vol ` ( `' f " { x } ) ) |
30 |
24 29 25
|
co |
|- ( x x. ( vol ` ( `' f " { x } ) ) ) |
31 |
23 30 20
|
csu |
|- sum_ x e. ( ran f \ { 0 } ) ( x x. ( vol ` ( `' f " { x } ) ) ) |
32 |
1 19 31
|
cmpt |
|- ( f e. { g e. MblFn | ( g : RR --> RR /\ ran g e. Fin /\ ( vol ` ( `' g " ( RR \ { 0 } ) ) ) e. RR ) } |-> sum_ x e. ( ran f \ { 0 } ) ( x x. ( vol ` ( `' f " { x } ) ) ) ) |
33 |
0 32
|
wceq |
|- S.1 = ( f e. { g e. MblFn | ( g : RR --> RR /\ ran g e. Fin /\ ( vol ` ( `' g " ( RR \ { 0 } ) ) ) e. RR ) } |-> sum_ x e. ( ran f \ { 0 } ) ( x x. ( vol ` ( `' f " { x } ) ) ) ) |