Metamath Proof Explorer


Definition df-ixp

Description: Definition of infinite Cartesian product of Enderton p. 54. Enderton uses a bold "X" with x e. A written underneath or as a subscript, as does Stoll p. 47. Some books use a capital pi, but we will reserve that notation for products of numbers. Usually B represents a class expression containing x free and thus can be thought of as B ( x ) . Normally, x is not free in A , although this is not a requirement of the definition. (Contributed by NM, 28-Sep-2006)

Ref Expression
Assertion df-ixp
|- X_ x e. A B = { f | ( f Fn { x | x e. A } /\ A. x e. A ( f ` x ) e. B ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 vx
 |-  x
1 cA
 |-  A
2 cB
 |-  B
3 0 1 2 cixp
 |-  X_ x e. A B
4 vf
 |-  f
5 4 cv
 |-  f
6 0 cv
 |-  x
7 6 1 wcel
 |-  x e. A
8 7 0 cab
 |-  { x | x e. A }
9 5 8 wfn
 |-  f Fn { x | x e. A }
10 6 5 cfv
 |-  ( f ` x )
11 10 2 wcel
 |-  ( f ` x ) e. B
12 11 0 1 wral
 |-  A. x e. A ( f ` x ) e. B
13 9 12 wa
 |-  ( f Fn { x | x e. A } /\ A. x e. A ( f ` x ) e. B )
14 13 4 cab
 |-  { f | ( f Fn { x | x e. A } /\ A. x e. A ( f ` x ) e. B ) }
15 3 14 wceq
 |-  X_ x e. A B = { f | ( f Fn { x | x e. A } /\ A. x e. A ( f ` x ) e. B ) }