Metamath Proof Explorer


Definition df-join

Description: Define poset join. (Contributed by NM, 12-Sep-2011) (Revised by Mario Carneiro, 3-Nov-2015)

Ref Expression
Assertion df-join
|- join = ( p e. _V |-> { <. <. x , y >. , z >. | { x , y } ( lub ` p ) z } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cjn
 |-  join
1 vp
 |-  p
2 cvv
 |-  _V
3 vx
 |-  x
4 vy
 |-  y
5 vz
 |-  z
6 3 cv
 |-  x
7 4 cv
 |-  y
8 6 7 cpr
 |-  { x , y }
9 club
 |-  lub
10 1 cv
 |-  p
11 10 9 cfv
 |-  ( lub ` p )
12 5 cv
 |-  z
13 8 12 11 wbr
 |-  { x , y } ( lub ` p ) z
14 13 3 4 5 coprab
 |-  { <. <. x , y >. , z >. | { x , y } ( lub ` p ) z }
15 1 2 14 cmpt
 |-  ( p e. _V |-> { <. <. x , y >. , z >. | { x , y } ( lub ` p ) z } )
16 0 15 wceq
 |-  join = ( p e. _V |-> { <. <. x , y >. , z >. | { x , y } ( lub ` p ) z } )