Database
BASIC TOPOLOGY
Topology
Compactly generated spaces
df-kgen
Metamath Proof Explorer
Description: Define the "compact generator", the functor from topological spaces to
compactly generated spaces. Also known as the k-ification operation. A
set is k-open, i.e. x e. ( kGen j ) , iff the preimage of x
is open in all compact Hausdorff spaces. (Contributed by Mario
Carneiro , 20-Mar-2015)
Ref
Expression
Assertion
df-kgen
|- kGen = ( j e. Top |-> { x e. ~P U. j | A. k e. ~P U. j ( ( j |`t k ) e. Comp -> ( x i^i k ) e. ( j |`t k ) ) } )
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
ckgen
|- kGen
1
vj
|- j
2
ctop
|- Top
3
vx
|- x
4
1
cv
|- j
5
4
cuni
|- U. j
6
5
cpw
|- ~P U. j
7
vk
|- k
8
crest
|- |`t
9
7
cv
|- k
10
4 9 8
co
|- ( j |`t k )
11
ccmp
|- Comp
12
10 11
wcel
|- ( j |`t k ) e. Comp
13
3
cv
|- x
14
13 9
cin
|- ( x i^i k )
15
14 10
wcel
|- ( x i^i k ) e. ( j |`t k )
16
12 15
wi
|- ( ( j |`t k ) e. Comp -> ( x i^i k ) e. ( j |`t k ) )
17
16 7 6
wral
|- A. k e. ~P U. j ( ( j |`t k ) e. Comp -> ( x i^i k ) e. ( j |`t k ) )
18
17 3 6
crab
|- { x e. ~P U. j | A. k e. ~P U. j ( ( j |`t k ) e. Comp -> ( x i^i k ) e. ( j |`t k ) ) }
19
1 2 18
cmpt
|- ( j e. Top |-> { x e. ~P U. j | A. k e. ~P U. j ( ( j |`t k ) e. Comp -> ( x i^i k ) e. ( j |`t k ) ) } )
20
0 19
wceq
|- kGen = ( j e. Top |-> { x e. ~P U. j | A. k e. ~P U. j ( ( j |`t k ) e. Comp -> ( x i^i k ) e. ( j |`t k ) ) } )