Metamath Proof Explorer


Definition df-kgen

Description: Define the "compact generator", the functor from topological spaces to compactly generated spaces. Also known as the k-ification operation. A set is k-open, i.e. x e. ( kGenj ) , iff the preimage of x is open in all compact Hausdorff spaces. (Contributed by Mario Carneiro, 20-Mar-2015)

Ref Expression
Assertion df-kgen
|- kGen = ( j e. Top |-> { x e. ~P U. j | A. k e. ~P U. j ( ( j |`t k ) e. Comp -> ( x i^i k ) e. ( j |`t k ) ) } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 ckgen
 |-  kGen
1 vj
 |-  j
2 ctop
 |-  Top
3 vx
 |-  x
4 1 cv
 |-  j
5 4 cuni
 |-  U. j
6 5 cpw
 |-  ~P U. j
7 vk
 |-  k
8 crest
 |-  |`t
9 7 cv
 |-  k
10 4 9 8 co
 |-  ( j |`t k )
11 ccmp
 |-  Comp
12 10 11 wcel
 |-  ( j |`t k ) e. Comp
13 3 cv
 |-  x
14 13 9 cin
 |-  ( x i^i k )
15 14 10 wcel
 |-  ( x i^i k ) e. ( j |`t k )
16 12 15 wi
 |-  ( ( j |`t k ) e. Comp -> ( x i^i k ) e. ( j |`t k ) )
17 16 7 6 wral
 |-  A. k e. ~P U. j ( ( j |`t k ) e. Comp -> ( x i^i k ) e. ( j |`t k ) )
18 17 3 6 crab
 |-  { x e. ~P U. j | A. k e. ~P U. j ( ( j |`t k ) e. Comp -> ( x i^i k ) e. ( j |`t k ) ) }
19 1 2 18 cmpt
 |-  ( j e. Top |-> { x e. ~P U. j | A. k e. ~P U. j ( ( j |`t k ) e. Comp -> ( x i^i k ) e. ( j |`t k ) ) } )
20 0 19 wceq
 |-  kGen = ( j e. Top |-> { x e. ~P U. j | A. k e. ~P U. j ( ( j |`t k ) e. Comp -> ( x i^i k ) e. ( j |`t k ) ) } )