Database BASIC TOPOLOGY Topology Compactly generated spaces df-kgen  
				
		 
		
			
		 
		Description:   Define the "compact generator", the functor from topological spaces to
       compactly generated spaces.  Also known as the k-ification operation.  A
       set is k-open, i.e. x e. ( kGen j )  , iff the preimage of x 
       is open in all compact Hausdorff spaces.  (Contributed by Mario
       Carneiro , 20-Mar-2015) 
		
			
				
					Ref 
					Expression 
				 
				
					Assertion 
					df-kgen |- kGen = ( j e. Top |-> { x e. ~P U. j | A. k e. ~P U. j ( ( j |`t k ) e. Comp -> ( x i^i k ) e. ( j |`t k ) ) } )  
			
		 
		
				Detailed syntax breakdown 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							0 
								
							 
							ckgen  |-  kGen  
						
							1 
								
							 
							vj  |-  j  
						
							2 
								
							 
							ctop  |-  Top  
						
							3 
								
							 
							vx  |-  x  
						
							4 
								1 
							 
							cv  |-  j  
						
							5 
								4 
							 
							cuni  |-  U. j  
						
							6 
								5 
							 
							cpw  |-  ~P U. j  
						
							7 
								
							 
							vk  |-  k  
						
							8 
								
							 
							crest  |-  |`t  
						
							9 
								7 
							 
							cv  |-  k  
						
							10 
								4  9  8 
							 
							co  |-  ( j |`t k )  
						
							11 
								
							 
							ccmp  |-  Comp  
						
							12 
								10  11 
							 
							wcel  |-  ( j |`t k ) e. Comp  
						
							13 
								3 
							 
							cv  |-  x  
						
							14 
								13  9 
							 
							cin  |-  ( x i^i k )  
						
							15 
								14  10 
							 
							wcel  |-  ( x i^i k ) e. ( j |`t k )  
						
							16 
								12  15 
							 
							wi  |-  ( ( j |`t k ) e. Comp -> ( x i^i k ) e. ( j |`t k ) )  
						
							17 
								16  7  6 
							 
							wral  |-  A. k e. ~P U. j ( ( j |`t k ) e. Comp -> ( x i^i k ) e. ( j |`t k ) )  
						
							18 
								17  3  6 
							 
							crab  |-  { x e. ~P U. j | A. k e. ~P U. j ( ( j |`t k ) e. Comp -> ( x i^i k ) e. ( j |`t k ) ) }  
						
							19 
								1  2  18 
							 
							cmpt  |-  ( j e. Top |-> { x e. ~P U. j | A. k e. ~P U. j ( ( j |`t k ) e. Comp -> ( x i^i k ) e. ( j |`t k ) ) } )  
						
							20 
								0  19 
							 
							wceq  |-  kGen = ( j e. Top |-> { x e. ~P U. j | A. k e. ~P U. j ( ( j |`t k ) e. Comp -> ( x i^i k ) e. ( j |`t k ) ) } )