| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 0 | 
							
								
							 | 
							clat | 
							 |-  Lat  | 
						
						
							| 1 | 
							
								
							 | 
							vp | 
							 |-  p  | 
						
						
							| 2 | 
							
								
							 | 
							cpo | 
							 |-  Poset  | 
						
						
							| 3 | 
							
								
							 | 
							cjn | 
							 |-  join  | 
						
						
							| 4 | 
							
								1
							 | 
							cv | 
							 |-  p  | 
						
						
							| 5 | 
							
								4 3
							 | 
							cfv | 
							 |-  ( join ` p )  | 
						
						
							| 6 | 
							
								5
							 | 
							cdm | 
							 |-  dom ( join ` p )  | 
						
						
							| 7 | 
							
								
							 | 
							cbs | 
							 |-  Base  | 
						
						
							| 8 | 
							
								4 7
							 | 
							cfv | 
							 |-  ( Base ` p )  | 
						
						
							| 9 | 
							
								8 8
							 | 
							cxp | 
							 |-  ( ( Base ` p ) X. ( Base ` p ) )  | 
						
						
							| 10 | 
							
								6 9
							 | 
							wceq | 
							 |-  dom ( join ` p ) = ( ( Base ` p ) X. ( Base ` p ) )  | 
						
						
							| 11 | 
							
								
							 | 
							cmee | 
							 |-  meet  | 
						
						
							| 12 | 
							
								4 11
							 | 
							cfv | 
							 |-  ( meet ` p )  | 
						
						
							| 13 | 
							
								12
							 | 
							cdm | 
							 |-  dom ( meet ` p )  | 
						
						
							| 14 | 
							
								13 9
							 | 
							wceq | 
							 |-  dom ( meet ` p ) = ( ( Base ` p ) X. ( Base ` p ) )  | 
						
						
							| 15 | 
							
								10 14
							 | 
							wa | 
							 |-  ( dom ( join ` p ) = ( ( Base ` p ) X. ( Base ` p ) ) /\ dom ( meet ` p ) = ( ( Base ` p ) X. ( Base ` p ) ) )  | 
						
						
							| 16 | 
							
								15 1 2
							 | 
							crab | 
							 |-  { p e. Poset | ( dom ( join ` p ) = ( ( Base ` p ) X. ( Base ` p ) ) /\ dom ( meet ` p ) = ( ( Base ` p ) X. ( Base ` p ) ) ) } | 
						
						
							| 17 | 
							
								0 16
							 | 
							wceq | 
							 |-  Lat = { p e. Poset | ( dom ( join ` p ) = ( ( Base ` p ) X. ( Base ` p ) ) /\ dom ( meet ` p ) = ( ( Base ` p ) X. ( Base ` p ) ) ) } |