Metamath Proof Explorer


Definition df-lat

Description: Define the class of all lattices. A lattice is a poset in which the join and meet of any two elements always exists. (Contributed by NM, 18-Oct-2012) (Revised by NM, 12-Sep-2018)

Ref Expression
Assertion df-lat
|- Lat = { p e. Poset | ( dom ( join ` p ) = ( ( Base ` p ) X. ( Base ` p ) ) /\ dom ( meet ` p ) = ( ( Base ` p ) X. ( Base ` p ) ) ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 clat
 |-  Lat
1 vp
 |-  p
2 cpo
 |-  Poset
3 cjn
 |-  join
4 1 cv
 |-  p
5 4 3 cfv
 |-  ( join ` p )
6 5 cdm
 |-  dom ( join ` p )
7 cbs
 |-  Base
8 4 7 cfv
 |-  ( Base ` p )
9 8 8 cxp
 |-  ( ( Base ` p ) X. ( Base ` p ) )
10 6 9 wceq
 |-  dom ( join ` p ) = ( ( Base ` p ) X. ( Base ` p ) )
11 cmee
 |-  meet
12 4 11 cfv
 |-  ( meet ` p )
13 12 cdm
 |-  dom ( meet ` p )
14 13 9 wceq
 |-  dom ( meet ` p ) = ( ( Base ` p ) X. ( Base ` p ) )
15 10 14 wa
 |-  ( dom ( join ` p ) = ( ( Base ` p ) X. ( Base ` p ) ) /\ dom ( meet ` p ) = ( ( Base ` p ) X. ( Base ` p ) ) )
16 15 1 2 crab
 |-  { p e. Poset | ( dom ( join ` p ) = ( ( Base ` p ) X. ( Base ` p ) ) /\ dom ( meet ` p ) = ( ( Base ` p ) X. ( Base ` p ) ) ) }
17 0 16 wceq
 |-  Lat = { p e. Poset | ( dom ( join ` p ) = ( ( Base ` p ) X. ( Base ` p ) ) /\ dom ( meet ` p ) = ( ( Base ` p ) X. ( Base ` p ) ) ) }