Step |
Hyp |
Ref |
Expression |
0 |
|
clbs |
|- LBasis |
1 |
|
vw |
|- w |
2 |
|
cvv |
|- _V |
3 |
|
vb |
|- b |
4 |
|
cbs |
|- Base |
5 |
1
|
cv |
|- w |
6 |
5 4
|
cfv |
|- ( Base ` w ) |
7 |
6
|
cpw |
|- ~P ( Base ` w ) |
8 |
|
clspn |
|- LSpan |
9 |
5 8
|
cfv |
|- ( LSpan ` w ) |
10 |
|
vn |
|- n |
11 |
|
csca |
|- Scalar |
12 |
5 11
|
cfv |
|- ( Scalar ` w ) |
13 |
|
vs |
|- s |
14 |
10
|
cv |
|- n |
15 |
3
|
cv |
|- b |
16 |
15 14
|
cfv |
|- ( n ` b ) |
17 |
16 6
|
wceq |
|- ( n ` b ) = ( Base ` w ) |
18 |
|
vx |
|- x |
19 |
|
vy |
|- y |
20 |
13
|
cv |
|- s |
21 |
20 4
|
cfv |
|- ( Base ` s ) |
22 |
|
c0g |
|- 0g |
23 |
20 22
|
cfv |
|- ( 0g ` s ) |
24 |
23
|
csn |
|- { ( 0g ` s ) } |
25 |
21 24
|
cdif |
|- ( ( Base ` s ) \ { ( 0g ` s ) } ) |
26 |
19
|
cv |
|- y |
27 |
|
cvsca |
|- .s |
28 |
5 27
|
cfv |
|- ( .s ` w ) |
29 |
18
|
cv |
|- x |
30 |
26 29 28
|
co |
|- ( y ( .s ` w ) x ) |
31 |
29
|
csn |
|- { x } |
32 |
15 31
|
cdif |
|- ( b \ { x } ) |
33 |
32 14
|
cfv |
|- ( n ` ( b \ { x } ) ) |
34 |
30 33
|
wcel |
|- ( y ( .s ` w ) x ) e. ( n ` ( b \ { x } ) ) |
35 |
34
|
wn |
|- -. ( y ( .s ` w ) x ) e. ( n ` ( b \ { x } ) ) |
36 |
35 19 25
|
wral |
|- A. y e. ( ( Base ` s ) \ { ( 0g ` s ) } ) -. ( y ( .s ` w ) x ) e. ( n ` ( b \ { x } ) ) |
37 |
36 18 15
|
wral |
|- A. x e. b A. y e. ( ( Base ` s ) \ { ( 0g ` s ) } ) -. ( y ( .s ` w ) x ) e. ( n ` ( b \ { x } ) ) |
38 |
17 37
|
wa |
|- ( ( n ` b ) = ( Base ` w ) /\ A. x e. b A. y e. ( ( Base ` s ) \ { ( 0g ` s ) } ) -. ( y ( .s ` w ) x ) e. ( n ` ( b \ { x } ) ) ) |
39 |
38 13 12
|
wsbc |
|- [. ( Scalar ` w ) / s ]. ( ( n ` b ) = ( Base ` w ) /\ A. x e. b A. y e. ( ( Base ` s ) \ { ( 0g ` s ) } ) -. ( y ( .s ` w ) x ) e. ( n ` ( b \ { x } ) ) ) |
40 |
39 10 9
|
wsbc |
|- [. ( LSpan ` w ) / n ]. [. ( Scalar ` w ) / s ]. ( ( n ` b ) = ( Base ` w ) /\ A. x e. b A. y e. ( ( Base ` s ) \ { ( 0g ` s ) } ) -. ( y ( .s ` w ) x ) e. ( n ` ( b \ { x } ) ) ) |
41 |
40 3 7
|
crab |
|- { b e. ~P ( Base ` w ) | [. ( LSpan ` w ) / n ]. [. ( Scalar ` w ) / s ]. ( ( n ` b ) = ( Base ` w ) /\ A. x e. b A. y e. ( ( Base ` s ) \ { ( 0g ` s ) } ) -. ( y ( .s ` w ) x ) e. ( n ` ( b \ { x } ) ) ) } |
42 |
1 2 41
|
cmpt |
|- ( w e. _V |-> { b e. ~P ( Base ` w ) | [. ( LSpan ` w ) / n ]. [. ( Scalar ` w ) / s ]. ( ( n ` b ) = ( Base ` w ) /\ A. x e. b A. y e. ( ( Base ` s ) \ { ( 0g ` s ) } ) -. ( y ( .s ` w ) x ) e. ( n ` ( b \ { x } ) ) ) } ) |
43 |
0 42
|
wceq |
|- LBasis = ( w e. _V |-> { b e. ~P ( Base ` w ) | [. ( LSpan ` w ) / n ]. [. ( Scalar ` w ) / s ]. ( ( n ` b ) = ( Base ` w ) /\ A. x e. b A. y e. ( ( Base ` s ) \ { ( 0g ` s ) } ) -. ( y ( .s ` w ) x ) e. ( n ` ( b \ { x } ) ) ) } ) |