| Step |
Hyp |
Ref |
Expression |
| 0 |
|
clcm |
|- lcm |
| 1 |
|
vx |
|- x |
| 2 |
|
cz |
|- ZZ |
| 3 |
|
vy |
|- y |
| 4 |
1
|
cv |
|- x |
| 5 |
|
cc0 |
|- 0 |
| 6 |
4 5
|
wceq |
|- x = 0 |
| 7 |
3
|
cv |
|- y |
| 8 |
7 5
|
wceq |
|- y = 0 |
| 9 |
6 8
|
wo |
|- ( x = 0 \/ y = 0 ) |
| 10 |
|
vn |
|- n |
| 11 |
|
cn |
|- NN |
| 12 |
|
cdvds |
|- || |
| 13 |
10
|
cv |
|- n |
| 14 |
4 13 12
|
wbr |
|- x || n |
| 15 |
7 13 12
|
wbr |
|- y || n |
| 16 |
14 15
|
wa |
|- ( x || n /\ y || n ) |
| 17 |
16 10 11
|
crab |
|- { n e. NN | ( x || n /\ y || n ) } |
| 18 |
|
cr |
|- RR |
| 19 |
|
clt |
|- < |
| 20 |
17 18 19
|
cinf |
|- inf ( { n e. NN | ( x || n /\ y || n ) } , RR , < ) |
| 21 |
9 5 20
|
cif |
|- if ( ( x = 0 \/ y = 0 ) , 0 , inf ( { n e. NN | ( x || n /\ y || n ) } , RR , < ) ) |
| 22 |
1 3 2 2 21
|
cmpo |
|- ( x e. ZZ , y e. ZZ |-> if ( ( x = 0 \/ y = 0 ) , 0 , inf ( { n e. NN | ( x || n /\ y || n ) } , RR , < ) ) ) |
| 23 |
0 22
|
wceq |
|- lcm = ( x e. ZZ , y e. ZZ |-> if ( ( x = 0 \/ y = 0 ) , 0 , inf ( { n e. NN | ( x || n /\ y || n ) } , RR , < ) ) ) |