Metamath Proof Explorer


Definition df-lcmf

Description: Define the _lcm function on a set of integers. (Contributed by AV, 21-Aug-2020) (Revised by AV, 16-Sep-2020)

Ref Expression
Assertion df-lcmf
|- _lcm = ( z e. ~P ZZ |-> if ( 0 e. z , 0 , inf ( { n e. NN | A. m e. z m || n } , RR , < ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 clcmf
 |-  _lcm
1 vz
 |-  z
2 cz
 |-  ZZ
3 2 cpw
 |-  ~P ZZ
4 cc0
 |-  0
5 1 cv
 |-  z
6 4 5 wcel
 |-  0 e. z
7 vn
 |-  n
8 cn
 |-  NN
9 vm
 |-  m
10 9 cv
 |-  m
11 cdvds
 |-  ||
12 7 cv
 |-  n
13 10 12 11 wbr
 |-  m || n
14 13 9 5 wral
 |-  A. m e. z m || n
15 14 7 8 crab
 |-  { n e. NN | A. m e. z m || n }
16 cr
 |-  RR
17 clt
 |-  <
18 15 16 17 cinf
 |-  inf ( { n e. NN | A. m e. z m || n } , RR , < )
19 6 4 18 cif
 |-  if ( 0 e. z , 0 , inf ( { n e. NN | A. m e. z m || n } , RR , < ) )
20 1 3 19 cmpt
 |-  ( z e. ~P ZZ |-> if ( 0 e. z , 0 , inf ( { n e. NN | A. m e. z m || n } , RR , < ) ) )
21 0 20 wceq
 |-  _lcm = ( z e. ~P ZZ |-> if ( 0 e. z , 0 , inf ( { n e. NN | A. m e. z m || n } , RR , < ) ) )