Step |
Hyp |
Ref |
Expression |
0 |
|
cldgis |
|- ldgIdlSeq |
1 |
|
vr |
|- r |
2 |
|
cvv |
|- _V |
3 |
|
vi |
|- i |
4 |
|
clidl |
|- LIdeal |
5 |
|
cpl1 |
|- Poly1 |
6 |
1
|
cv |
|- r |
7 |
6 5
|
cfv |
|- ( Poly1 ` r ) |
8 |
7 4
|
cfv |
|- ( LIdeal ` ( Poly1 ` r ) ) |
9 |
|
vx |
|- x |
10 |
|
cn0 |
|- NN0 |
11 |
|
vj |
|- j |
12 |
|
vk |
|- k |
13 |
3
|
cv |
|- i |
14 |
|
cdg1 |
|- deg1 |
15 |
6 14
|
cfv |
|- ( deg1 ` r ) |
16 |
12
|
cv |
|- k |
17 |
16 15
|
cfv |
|- ( ( deg1 ` r ) ` k ) |
18 |
|
cle |
|- <_ |
19 |
9
|
cv |
|- x |
20 |
17 19 18
|
wbr |
|- ( ( deg1 ` r ) ` k ) <_ x |
21 |
11
|
cv |
|- j |
22 |
|
cco1 |
|- coe1 |
23 |
16 22
|
cfv |
|- ( coe1 ` k ) |
24 |
19 23
|
cfv |
|- ( ( coe1 ` k ) ` x ) |
25 |
21 24
|
wceq |
|- j = ( ( coe1 ` k ) ` x ) |
26 |
20 25
|
wa |
|- ( ( ( deg1 ` r ) ` k ) <_ x /\ j = ( ( coe1 ` k ) ` x ) ) |
27 |
26 12 13
|
wrex |
|- E. k e. i ( ( ( deg1 ` r ) ` k ) <_ x /\ j = ( ( coe1 ` k ) ` x ) ) |
28 |
27 11
|
cab |
|- { j | E. k e. i ( ( ( deg1 ` r ) ` k ) <_ x /\ j = ( ( coe1 ` k ) ` x ) ) } |
29 |
9 10 28
|
cmpt |
|- ( x e. NN0 |-> { j | E. k e. i ( ( ( deg1 ` r ) ` k ) <_ x /\ j = ( ( coe1 ` k ) ` x ) ) } ) |
30 |
3 8 29
|
cmpt |
|- ( i e. ( LIdeal ` ( Poly1 ` r ) ) |-> ( x e. NN0 |-> { j | E. k e. i ( ( ( deg1 ` r ) ` k ) <_ x /\ j = ( ( coe1 ` k ) ` x ) ) } ) ) |
31 |
1 2 30
|
cmpt |
|- ( r e. _V |-> ( i e. ( LIdeal ` ( Poly1 ` r ) ) |-> ( x e. NN0 |-> { j | E. k e. i ( ( ( deg1 ` r ) ` k ) <_ x /\ j = ( ( coe1 ` k ) ` x ) ) } ) ) ) |
32 |
0 31
|
wceq |
|- ldgIdlSeq = ( r e. _V |-> ( i e. ( LIdeal ` ( Poly1 ` r ) ) |-> ( x e. NN0 |-> { j | E. k e. i ( ( ( deg1 ` r ) ` k ) <_ x /\ j = ( ( coe1 ` k ) ` x ) ) } ) ) ) |