Metamath Proof Explorer


Definition df-ldil

Description: Define set of all lattice dilations. Similar to definition of dilation in Crawley p. 111. (Contributed by NM, 11-May-2012)

Ref Expression
Assertion df-ldil
|- LDil = ( k e. _V |-> ( w e. ( LHyp ` k ) |-> { f e. ( LAut ` k ) | A. x e. ( Base ` k ) ( x ( le ` k ) w -> ( f ` x ) = x ) } ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cldil
 |-  LDil
1 vk
 |-  k
2 cvv
 |-  _V
3 vw
 |-  w
4 clh
 |-  LHyp
5 1 cv
 |-  k
6 5 4 cfv
 |-  ( LHyp ` k )
7 vf
 |-  f
8 claut
 |-  LAut
9 5 8 cfv
 |-  ( LAut ` k )
10 vx
 |-  x
11 cbs
 |-  Base
12 5 11 cfv
 |-  ( Base ` k )
13 10 cv
 |-  x
14 cple
 |-  le
15 5 14 cfv
 |-  ( le ` k )
16 3 cv
 |-  w
17 13 16 15 wbr
 |-  x ( le ` k ) w
18 7 cv
 |-  f
19 13 18 cfv
 |-  ( f ` x )
20 19 13 wceq
 |-  ( f ` x ) = x
21 17 20 wi
 |-  ( x ( le ` k ) w -> ( f ` x ) = x )
22 21 10 12 wral
 |-  A. x e. ( Base ` k ) ( x ( le ` k ) w -> ( f ` x ) = x )
23 22 7 9 crab
 |-  { f e. ( LAut ` k ) | A. x e. ( Base ` k ) ( x ( le ` k ) w -> ( f ` x ) = x ) }
24 3 6 23 cmpt
 |-  ( w e. ( LHyp ` k ) |-> { f e. ( LAut ` k ) | A. x e. ( Base ` k ) ( x ( le ` k ) w -> ( f ` x ) = x ) } )
25 1 2 24 cmpt
 |-  ( k e. _V |-> ( w e. ( LHyp ` k ) |-> { f e. ( LAut ` k ) | A. x e. ( Base ` k ) ( x ( le ` k ) w -> ( f ` x ) = x ) } ) )
26 0 25 wceq
 |-  LDil = ( k e. _V |-> ( w e. ( LHyp ` k ) |-> { f e. ( LAut ` k ) | A. x e. ( Base ` k ) ( x ( le ` k ) w -> ( f ` x ) = x ) } ) )