Step |
Hyp |
Ref |
Expression |
0 |
|
cleg |
|- leG |
1 |
|
vg |
|- g |
2 |
|
cvv |
|- _V |
3 |
|
ve |
|- e |
4 |
|
vf |
|- f |
5 |
|
cbs |
|- Base |
6 |
1
|
cv |
|- g |
7 |
6 5
|
cfv |
|- ( Base ` g ) |
8 |
|
vp |
|- p |
9 |
|
cds |
|- dist |
10 |
6 9
|
cfv |
|- ( dist ` g ) |
11 |
|
vd |
|- d |
12 |
|
citv |
|- Itv |
13 |
6 12
|
cfv |
|- ( Itv ` g ) |
14 |
|
vi |
|- i |
15 |
|
vx |
|- x |
16 |
8
|
cv |
|- p |
17 |
|
vy |
|- y |
18 |
4
|
cv |
|- f |
19 |
15
|
cv |
|- x |
20 |
11
|
cv |
|- d |
21 |
17
|
cv |
|- y |
22 |
19 21 20
|
co |
|- ( x d y ) |
23 |
18 22
|
wceq |
|- f = ( x d y ) |
24 |
|
vz |
|- z |
25 |
24
|
cv |
|- z |
26 |
14
|
cv |
|- i |
27 |
19 21 26
|
co |
|- ( x i y ) |
28 |
25 27
|
wcel |
|- z e. ( x i y ) |
29 |
3
|
cv |
|- e |
30 |
19 25 20
|
co |
|- ( x d z ) |
31 |
29 30
|
wceq |
|- e = ( x d z ) |
32 |
28 31
|
wa |
|- ( z e. ( x i y ) /\ e = ( x d z ) ) |
33 |
32 24 16
|
wrex |
|- E. z e. p ( z e. ( x i y ) /\ e = ( x d z ) ) |
34 |
23 33
|
wa |
|- ( f = ( x d y ) /\ E. z e. p ( z e. ( x i y ) /\ e = ( x d z ) ) ) |
35 |
34 17 16
|
wrex |
|- E. y e. p ( f = ( x d y ) /\ E. z e. p ( z e. ( x i y ) /\ e = ( x d z ) ) ) |
36 |
35 15 16
|
wrex |
|- E. x e. p E. y e. p ( f = ( x d y ) /\ E. z e. p ( z e. ( x i y ) /\ e = ( x d z ) ) ) |
37 |
36 14 13
|
wsbc |
|- [. ( Itv ` g ) / i ]. E. x e. p E. y e. p ( f = ( x d y ) /\ E. z e. p ( z e. ( x i y ) /\ e = ( x d z ) ) ) |
38 |
37 11 10
|
wsbc |
|- [. ( dist ` g ) / d ]. [. ( Itv ` g ) / i ]. E. x e. p E. y e. p ( f = ( x d y ) /\ E. z e. p ( z e. ( x i y ) /\ e = ( x d z ) ) ) |
39 |
38 8 7
|
wsbc |
|- [. ( Base ` g ) / p ]. [. ( dist ` g ) / d ]. [. ( Itv ` g ) / i ]. E. x e. p E. y e. p ( f = ( x d y ) /\ E. z e. p ( z e. ( x i y ) /\ e = ( x d z ) ) ) |
40 |
39 3 4
|
copab |
|- { <. e , f >. | [. ( Base ` g ) / p ]. [. ( dist ` g ) / d ]. [. ( Itv ` g ) / i ]. E. x e. p E. y e. p ( f = ( x d y ) /\ E. z e. p ( z e. ( x i y ) /\ e = ( x d z ) ) ) } |
41 |
1 2 40
|
cmpt |
|- ( g e. _V |-> { <. e , f >. | [. ( Base ` g ) / p ]. [. ( dist ` g ) / d ]. [. ( Itv ` g ) / i ]. E. x e. p E. y e. p ( f = ( x d y ) /\ E. z e. p ( z e. ( x i y ) /\ e = ( x d z ) ) ) } ) |
42 |
0 41
|
wceq |
|- leG = ( g e. _V |-> { <. e , f >. | [. ( Base ` g ) / p ]. [. ( dist ` g ) / d ]. [. ( Itv ` g ) / i ]. E. x e. p E. y e. p ( f = ( x d y ) /\ E. z e. p ( z e. ( x i y ) /\ e = ( x d z ) ) ) } ) |