Metamath Proof Explorer


Definition df-lfig

Description: Define the class of finitely generated left modules. Finite generation of subspaces can be intepreted using ` |``s ` . (Contributed by Stefan O'Rear, 1-Jan-2015)

Ref Expression
Assertion df-lfig
|- LFinGen = { w e. LMod | ( Base ` w ) e. ( ( LSpan ` w ) " ( ~P ( Base ` w ) i^i Fin ) ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 clfig
 |-  LFinGen
1 vw
 |-  w
2 clmod
 |-  LMod
3 cbs
 |-  Base
4 1 cv
 |-  w
5 4 3 cfv
 |-  ( Base ` w )
6 clspn
 |-  LSpan
7 4 6 cfv
 |-  ( LSpan ` w )
8 5 cpw
 |-  ~P ( Base ` w )
9 cfn
 |-  Fin
10 8 9 cin
 |-  ( ~P ( Base ` w ) i^i Fin )
11 7 10 cima
 |-  ( ( LSpan ` w ) " ( ~P ( Base ` w ) i^i Fin ) )
12 5 11 wcel
 |-  ( Base ` w ) e. ( ( LSpan ` w ) " ( ~P ( Base ` w ) i^i Fin ) )
13 12 1 2 crab
 |-  { w e. LMod | ( Base ` w ) e. ( ( LSpan ` w ) " ( ~P ( Base ` w ) i^i Fin ) ) }
14 0 13 wceq
 |-  LFinGen = { w e. LMod | ( Base ` w ) e. ( ( LSpan ` w ) " ( ~P ( Base ` w ) i^i Fin ) ) }