| Step |
Hyp |
Ref |
Expression |
| 0 |
|
clgs |
|- /L |
| 1 |
|
va |
|- a |
| 2 |
|
cz |
|- ZZ |
| 3 |
|
vn |
|- n |
| 4 |
3
|
cv |
|- n |
| 5 |
|
cc0 |
|- 0 |
| 6 |
4 5
|
wceq |
|- n = 0 |
| 7 |
1
|
cv |
|- a |
| 8 |
|
cexp |
|- ^ |
| 9 |
|
c2 |
|- 2 |
| 10 |
7 9 8
|
co |
|- ( a ^ 2 ) |
| 11 |
|
c1 |
|- 1 |
| 12 |
10 11
|
wceq |
|- ( a ^ 2 ) = 1 |
| 13 |
12 11 5
|
cif |
|- if ( ( a ^ 2 ) = 1 , 1 , 0 ) |
| 14 |
|
clt |
|- < |
| 15 |
4 5 14
|
wbr |
|- n < 0 |
| 16 |
7 5 14
|
wbr |
|- a < 0 |
| 17 |
15 16
|
wa |
|- ( n < 0 /\ a < 0 ) |
| 18 |
11
|
cneg |
|- -u 1 |
| 19 |
17 18 11
|
cif |
|- if ( ( n < 0 /\ a < 0 ) , -u 1 , 1 ) |
| 20 |
|
cmul |
|- x. |
| 21 |
|
vm |
|- m |
| 22 |
|
cn |
|- NN |
| 23 |
21
|
cv |
|- m |
| 24 |
|
cprime |
|- Prime |
| 25 |
23 24
|
wcel |
|- m e. Prime |
| 26 |
23 9
|
wceq |
|- m = 2 |
| 27 |
|
cdvds |
|- || |
| 28 |
9 7 27
|
wbr |
|- 2 || a |
| 29 |
|
cmo |
|- mod |
| 30 |
|
c8 |
|- 8 |
| 31 |
7 30 29
|
co |
|- ( a mod 8 ) |
| 32 |
|
c7 |
|- 7 |
| 33 |
11 32
|
cpr |
|- { 1 , 7 } |
| 34 |
31 33
|
wcel |
|- ( a mod 8 ) e. { 1 , 7 } |
| 35 |
34 11 18
|
cif |
|- if ( ( a mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) |
| 36 |
28 5 35
|
cif |
|- if ( 2 || a , 0 , if ( ( a mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) |
| 37 |
|
cmin |
|- - |
| 38 |
23 11 37
|
co |
|- ( m - 1 ) |
| 39 |
|
cdiv |
|- / |
| 40 |
38 9 39
|
co |
|- ( ( m - 1 ) / 2 ) |
| 41 |
7 40 8
|
co |
|- ( a ^ ( ( m - 1 ) / 2 ) ) |
| 42 |
|
caddc |
|- + |
| 43 |
41 11 42
|
co |
|- ( ( a ^ ( ( m - 1 ) / 2 ) ) + 1 ) |
| 44 |
43 23 29
|
co |
|- ( ( ( a ^ ( ( m - 1 ) / 2 ) ) + 1 ) mod m ) |
| 45 |
44 11 37
|
co |
|- ( ( ( ( a ^ ( ( m - 1 ) / 2 ) ) + 1 ) mod m ) - 1 ) |
| 46 |
26 36 45
|
cif |
|- if ( m = 2 , if ( 2 || a , 0 , if ( ( a mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) , ( ( ( ( a ^ ( ( m - 1 ) / 2 ) ) + 1 ) mod m ) - 1 ) ) |
| 47 |
|
cpc |
|- pCnt |
| 48 |
23 4 47
|
co |
|- ( m pCnt n ) |
| 49 |
46 48 8
|
co |
|- ( if ( m = 2 , if ( 2 || a , 0 , if ( ( a mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) , ( ( ( ( a ^ ( ( m - 1 ) / 2 ) ) + 1 ) mod m ) - 1 ) ) ^ ( m pCnt n ) ) |
| 50 |
25 49 11
|
cif |
|- if ( m e. Prime , ( if ( m = 2 , if ( 2 || a , 0 , if ( ( a mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) , ( ( ( ( a ^ ( ( m - 1 ) / 2 ) ) + 1 ) mod m ) - 1 ) ) ^ ( m pCnt n ) ) , 1 ) |
| 51 |
21 22 50
|
cmpt |
|- ( m e. NN |-> if ( m e. Prime , ( if ( m = 2 , if ( 2 || a , 0 , if ( ( a mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) , ( ( ( ( a ^ ( ( m - 1 ) / 2 ) ) + 1 ) mod m ) - 1 ) ) ^ ( m pCnt n ) ) , 1 ) ) |
| 52 |
20 51 11
|
cseq |
|- seq 1 ( x. , ( m e. NN |-> if ( m e. Prime , ( if ( m = 2 , if ( 2 || a , 0 , if ( ( a mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) , ( ( ( ( a ^ ( ( m - 1 ) / 2 ) ) + 1 ) mod m ) - 1 ) ) ^ ( m pCnt n ) ) , 1 ) ) ) |
| 53 |
|
cabs |
|- abs |
| 54 |
4 53
|
cfv |
|- ( abs ` n ) |
| 55 |
54 52
|
cfv |
|- ( seq 1 ( x. , ( m e. NN |-> if ( m e. Prime , ( if ( m = 2 , if ( 2 || a , 0 , if ( ( a mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) , ( ( ( ( a ^ ( ( m - 1 ) / 2 ) ) + 1 ) mod m ) - 1 ) ) ^ ( m pCnt n ) ) , 1 ) ) ) ` ( abs ` n ) ) |
| 56 |
19 55 20
|
co |
|- ( if ( ( n < 0 /\ a < 0 ) , -u 1 , 1 ) x. ( seq 1 ( x. , ( m e. NN |-> if ( m e. Prime , ( if ( m = 2 , if ( 2 || a , 0 , if ( ( a mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) , ( ( ( ( a ^ ( ( m - 1 ) / 2 ) ) + 1 ) mod m ) - 1 ) ) ^ ( m pCnt n ) ) , 1 ) ) ) ` ( abs ` n ) ) ) |
| 57 |
6 13 56
|
cif |
|- if ( n = 0 , if ( ( a ^ 2 ) = 1 , 1 , 0 ) , ( if ( ( n < 0 /\ a < 0 ) , -u 1 , 1 ) x. ( seq 1 ( x. , ( m e. NN |-> if ( m e. Prime , ( if ( m = 2 , if ( 2 || a , 0 , if ( ( a mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) , ( ( ( ( a ^ ( ( m - 1 ) / 2 ) ) + 1 ) mod m ) - 1 ) ) ^ ( m pCnt n ) ) , 1 ) ) ) ` ( abs ` n ) ) ) ) |
| 58 |
1 3 2 2 57
|
cmpo |
|- ( a e. ZZ , n e. ZZ |-> if ( n = 0 , if ( ( a ^ 2 ) = 1 , 1 , 0 ) , ( if ( ( n < 0 /\ a < 0 ) , -u 1 , 1 ) x. ( seq 1 ( x. , ( m e. NN |-> if ( m e. Prime , ( if ( m = 2 , if ( 2 || a , 0 , if ( ( a mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) , ( ( ( ( a ^ ( ( m - 1 ) / 2 ) ) + 1 ) mod m ) - 1 ) ) ^ ( m pCnt n ) ) , 1 ) ) ) ` ( abs ` n ) ) ) ) ) |
| 59 |
0 58
|
wceq |
|- /L = ( a e. ZZ , n e. ZZ |-> if ( n = 0 , if ( ( a ^ 2 ) = 1 , 1 , 0 ) , ( if ( ( n < 0 /\ a < 0 ) , -u 1 , 1 ) x. ( seq 1 ( x. , ( m e. NN |-> if ( m e. Prime , ( if ( m = 2 , if ( 2 || a , 0 , if ( ( a mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) , ( ( ( ( a ^ ( ( m - 1 ) / 2 ) ) + 1 ) mod m ) - 1 ) ) ^ ( m pCnt n ) ) , 1 ) ) ) ` ( abs ` n ) ) ) ) ) |