Metamath Proof Explorer


Definition df-lhyp

Description: Define the set of lattice hyperplanes, which are all lattice elements covered by 1 (i.e., all co-atoms). We call them "hyperplanes" instead of "co-atoms" in analogy with projective geometry hyperplanes. (Contributed by NM, 11-May-2012)

Ref Expression
Assertion df-lhyp
|- LHyp = ( k e. _V |-> { x e. ( Base ` k ) | x ( 

Detailed syntax breakdown

Step Hyp Ref Expression
0 clh
 |-  LHyp
1 vk
 |-  k
2 cvv
 |-  _V
3 vx
 |-  x
4 cbs
 |-  Base
5 1 cv
 |-  k
6 5 4 cfv
 |-  ( Base ` k )
7 3 cv
 |-  x
8 ccvr
 |-  
9 5 8 cfv
 |-  ( 
10 cp1
 |-  1.
11 5 10 cfv
 |-  ( 1. ` k )
12 7 11 9 wbr
 |-  x ( 
13 12 3 6 crab
 |-  { x e. ( Base ` k ) | x ( 
14 1 2 13 cmpt
 |-  ( k e. _V |-> { x e. ( Base ` k ) | x ( 
15 0 14 wceq
 |-  LHyp = ( k e. _V |-> { x e. ( Base ` k ) | x (