Description: Define the class of left ideals of a given ring. An ideal is a submodule of the ring viewed as a module over itself. (Contributed by Stefan O'Rear, 31-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | df-lidl | |- LIdeal = ( LSubSp o. ringLMod ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | clidl | |- LIdeal |
|
1 | clss | |- LSubSp |
|
2 | crglmod | |- ringLMod |
|
3 | 1 2 | ccom | |- ( LSubSp o. ringLMod ) |
4 | 0 3 | wceq | |- LIdeal = ( LSubSp o. ringLMod ) |