Step |
Hyp |
Ref |
Expression |
0 |
|
climc |
|- limCC |
1 |
|
vf |
|- f |
2 |
|
cc |
|- CC |
3 |
|
cpm |
|- ^pm |
4 |
2 2 3
|
co |
|- ( CC ^pm CC ) |
5 |
|
vx |
|- x |
6 |
|
vy |
|- y |
7 |
|
ctopn |
|- TopOpen |
8 |
|
ccnfld |
|- CCfld |
9 |
8 7
|
cfv |
|- ( TopOpen ` CCfld ) |
10 |
|
vj |
|- j |
11 |
|
vz |
|- z |
12 |
1
|
cv |
|- f |
13 |
12
|
cdm |
|- dom f |
14 |
5
|
cv |
|- x |
15 |
14
|
csn |
|- { x } |
16 |
13 15
|
cun |
|- ( dom f u. { x } ) |
17 |
11
|
cv |
|- z |
18 |
17 14
|
wceq |
|- z = x |
19 |
6
|
cv |
|- y |
20 |
17 12
|
cfv |
|- ( f ` z ) |
21 |
18 19 20
|
cif |
|- if ( z = x , y , ( f ` z ) ) |
22 |
11 16 21
|
cmpt |
|- ( z e. ( dom f u. { x } ) |-> if ( z = x , y , ( f ` z ) ) ) |
23 |
10
|
cv |
|- j |
24 |
|
crest |
|- |`t |
25 |
23 16 24
|
co |
|- ( j |`t ( dom f u. { x } ) ) |
26 |
|
ccnp |
|- CnP |
27 |
25 23 26
|
co |
|- ( ( j |`t ( dom f u. { x } ) ) CnP j ) |
28 |
14 27
|
cfv |
|- ( ( ( j |`t ( dom f u. { x } ) ) CnP j ) ` x ) |
29 |
22 28
|
wcel |
|- ( z e. ( dom f u. { x } ) |-> if ( z = x , y , ( f ` z ) ) ) e. ( ( ( j |`t ( dom f u. { x } ) ) CnP j ) ` x ) |
30 |
29 10 9
|
wsbc |
|- [. ( TopOpen ` CCfld ) / j ]. ( z e. ( dom f u. { x } ) |-> if ( z = x , y , ( f ` z ) ) ) e. ( ( ( j |`t ( dom f u. { x } ) ) CnP j ) ` x ) |
31 |
30 6
|
cab |
|- { y | [. ( TopOpen ` CCfld ) / j ]. ( z e. ( dom f u. { x } ) |-> if ( z = x , y , ( f ` z ) ) ) e. ( ( ( j |`t ( dom f u. { x } ) ) CnP j ) ` x ) } |
32 |
1 5 4 2 31
|
cmpo |
|- ( f e. ( CC ^pm CC ) , x e. CC |-> { y | [. ( TopOpen ` CCfld ) / j ]. ( z e. ( dom f u. { x } ) |-> if ( z = x , y , ( f ` z ) ) ) e. ( ( ( j |`t ( dom f u. { x } ) ) CnP j ) ` x ) } ) |
33 |
0 32
|
wceq |
|- limCC = ( f e. ( CC ^pm CC ) , x e. CC |-> { y | [. ( TopOpen ` CCfld ) / j ]. ( z e. ( dom f u. { x } ) |-> if ( z = x , y , ( f ` z ) ) ) e. ( ( ( j |`t ( dom f u. { x } ) ) CnP j ) ` x ) } ) |