| Step | Hyp | Ref | Expression | 
						
							| 0 |  | climc |  |-  limCC | 
						
							| 1 |  | vf |  |-  f | 
						
							| 2 |  | cc |  |-  CC | 
						
							| 3 |  | cpm |  |-  ^pm | 
						
							| 4 | 2 2 3 | co |  |-  ( CC ^pm CC ) | 
						
							| 5 |  | vx |  |-  x | 
						
							| 6 |  | vy |  |-  y | 
						
							| 7 |  | ctopn |  |-  TopOpen | 
						
							| 8 |  | ccnfld |  |-  CCfld | 
						
							| 9 | 8 7 | cfv |  |-  ( TopOpen ` CCfld ) | 
						
							| 10 |  | vj |  |-  j | 
						
							| 11 |  | vz |  |-  z | 
						
							| 12 | 1 | cv |  |-  f | 
						
							| 13 | 12 | cdm |  |-  dom f | 
						
							| 14 | 5 | cv |  |-  x | 
						
							| 15 | 14 | csn |  |-  { x } | 
						
							| 16 | 13 15 | cun |  |-  ( dom f u. { x } ) | 
						
							| 17 | 11 | cv |  |-  z | 
						
							| 18 | 17 14 | wceq |  |-  z = x | 
						
							| 19 | 6 | cv |  |-  y | 
						
							| 20 | 17 12 | cfv |  |-  ( f ` z ) | 
						
							| 21 | 18 19 20 | cif |  |-  if ( z = x , y , ( f ` z ) ) | 
						
							| 22 | 11 16 21 | cmpt |  |-  ( z e. ( dom f u. { x } ) |-> if ( z = x , y , ( f ` z ) ) ) | 
						
							| 23 | 10 | cv |  |-  j | 
						
							| 24 |  | crest |  |-  |`t | 
						
							| 25 | 23 16 24 | co |  |-  ( j |`t ( dom f u. { x } ) ) | 
						
							| 26 |  | ccnp |  |-  CnP | 
						
							| 27 | 25 23 26 | co |  |-  ( ( j |`t ( dom f u. { x } ) ) CnP j ) | 
						
							| 28 | 14 27 | cfv |  |-  ( ( ( j |`t ( dom f u. { x } ) ) CnP j ) ` x ) | 
						
							| 29 | 22 28 | wcel |  |-  ( z e. ( dom f u. { x } ) |-> if ( z = x , y , ( f ` z ) ) ) e. ( ( ( j |`t ( dom f u. { x } ) ) CnP j ) ` x ) | 
						
							| 30 | 29 10 9 | wsbc |  |-  [. ( TopOpen ` CCfld ) / j ]. ( z e. ( dom f u. { x } ) |-> if ( z = x , y , ( f ` z ) ) ) e. ( ( ( j |`t ( dom f u. { x } ) ) CnP j ) ` x ) | 
						
							| 31 | 30 6 | cab |  |-  { y | [. ( TopOpen ` CCfld ) / j ]. ( z e. ( dom f u. { x } ) |-> if ( z = x , y , ( f ` z ) ) ) e. ( ( ( j |`t ( dom f u. { x } ) ) CnP j ) ` x ) } | 
						
							| 32 | 1 5 4 2 31 | cmpo |  |-  ( f e. ( CC ^pm CC ) , x e. CC |-> { y | [. ( TopOpen ` CCfld ) / j ]. ( z e. ( dom f u. { x } ) |-> if ( z = x , y , ( f ` z ) ) ) e. ( ( ( j |`t ( dom f u. { x } ) ) CnP j ) ` x ) } ) | 
						
							| 33 | 0 32 | wceq |  |-  limCC = ( f e. ( CC ^pm CC ) , x e. CC |-> { y | [. ( TopOpen ` CCfld ) / j ]. ( z e. ( dom f u. { x } ) |-> if ( z = x , y , ( f ` z ) ) ) e. ( ( ( j |`t ( dom f u. { x } ) ) CnP j ) ` x ) } ) |