Metamath Proof Explorer


Definition df-lly

Description: Define a space that is locally A , where A is a topological property like "compact", "connected", or "path-connected". A topological space is locally A if every neighborhood of a point contains an open subneighborhood that is A in the subspace topology. (Contributed by Mario Carneiro, 2-Mar-2015)

Ref Expression
Assertion df-lly
|- Locally A = { j e. Top | A. x e. j A. y e. x E. u e. ( j i^i ~P x ) ( y e. u /\ ( j |`t u ) e. A ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cA
 |-  A
1 0 clly
 |-  Locally A
2 vj
 |-  j
3 ctop
 |-  Top
4 vx
 |-  x
5 2 cv
 |-  j
6 vy
 |-  y
7 4 cv
 |-  x
8 vu
 |-  u
9 7 cpw
 |-  ~P x
10 5 9 cin
 |-  ( j i^i ~P x )
11 6 cv
 |-  y
12 8 cv
 |-  u
13 11 12 wcel
 |-  y e. u
14 crest
 |-  |`t
15 5 12 14 co
 |-  ( j |`t u )
16 15 0 wcel
 |-  ( j |`t u ) e. A
17 13 16 wa
 |-  ( y e. u /\ ( j |`t u ) e. A )
18 17 8 10 wrex
 |-  E. u e. ( j i^i ~P x ) ( y e. u /\ ( j |`t u ) e. A )
19 18 6 7 wral
 |-  A. y e. x E. u e. ( j i^i ~P x ) ( y e. u /\ ( j |`t u ) e. A )
20 19 4 5 wral
 |-  A. x e. j A. y e. x E. u e. ( j i^i ~P x ) ( y e. u /\ ( j |`t u ) e. A )
21 20 2 3 crab
 |-  { j e. Top | A. x e. j A. y e. x E. u e. ( j i^i ~P x ) ( y e. u /\ ( j |`t u ) e. A ) }
22 1 21 wceq
 |-  Locally A = { j e. Top | A. x e. j A. y e. x E. u e. ( j i^i ~P x ) ( y e. u /\ ( j |`t u ) e. A ) }