Database
BASIC TOPOLOGY
Topology
Local topological properties
df-lly
Metamath Proof Explorer
Description: Define a space that is locally A , where A is a topological
property like "compact", "connected", or "path-connected". A
topological space is locally A if every neighborhood of a point
contains an open subneighborhood that is A in the subspace topology.
(Contributed by Mario Carneiro , 2-Mar-2015)
Ref
Expression
Assertion
df-lly
|- Locally A = { j e. Top | A. x e. j A. y e. x E. u e. ( j i^i ~P x ) ( y e. u /\ ( j |`t u ) e. A ) }
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
cA
|- A
1
0
clly
|- Locally A
2
vj
|- j
3
ctop
|- Top
4
vx
|- x
5
2
cv
|- j
6
vy
|- y
7
4
cv
|- x
8
vu
|- u
9
7
cpw
|- ~P x
10
5 9
cin
|- ( j i^i ~P x )
11
6
cv
|- y
12
8
cv
|- u
13
11 12
wcel
|- y e. u
14
crest
|- |`t
15
5 12 14
co
|- ( j |`t u )
16
15 0
wcel
|- ( j |`t u ) e. A
17
13 16
wa
|- ( y e. u /\ ( j |`t u ) e. A )
18
17 8 10
wrex
|- E. u e. ( j i^i ~P x ) ( y e. u /\ ( j |`t u ) e. A )
19
18 6 7
wral
|- A. y e. x E. u e. ( j i^i ~P x ) ( y e. u /\ ( j |`t u ) e. A )
20
19 4 5
wral
|- A. x e. j A. y e. x E. u e. ( j i^i ~P x ) ( y e. u /\ ( j |`t u ) e. A )
21
20 2 3
crab
|- { j e. Top | A. x e. j A. y e. x E. u e. ( j i^i ~P x ) ( y e. u /\ ( j |`t u ) e. A ) }
22
1 21
wceq
|- Locally A = { j e. Top | A. x e. j A. y e. x E. u e. ( j i^i ~P x ) ( y e. u /\ ( j |`t u ) e. A ) }