| Step | Hyp | Ref | Expression | 
						
							| 0 |  | clmhm |  |-  LMHom | 
						
							| 1 |  | vs |  |-  s | 
						
							| 2 |  | clmod |  |-  LMod | 
						
							| 3 |  | vt |  |-  t | 
						
							| 4 |  | vf |  |-  f | 
						
							| 5 | 1 | cv |  |-  s | 
						
							| 6 |  | cghm |  |-  GrpHom | 
						
							| 7 | 3 | cv |  |-  t | 
						
							| 8 | 5 7 6 | co |  |-  ( s GrpHom t ) | 
						
							| 9 |  | csca |  |-  Scalar | 
						
							| 10 | 5 9 | cfv |  |-  ( Scalar ` s ) | 
						
							| 11 |  | vw |  |-  w | 
						
							| 12 | 7 9 | cfv |  |-  ( Scalar ` t ) | 
						
							| 13 | 11 | cv |  |-  w | 
						
							| 14 | 12 13 | wceq |  |-  ( Scalar ` t ) = w | 
						
							| 15 |  | vx |  |-  x | 
						
							| 16 |  | cbs |  |-  Base | 
						
							| 17 | 13 16 | cfv |  |-  ( Base ` w ) | 
						
							| 18 |  | vy |  |-  y | 
						
							| 19 | 5 16 | cfv |  |-  ( Base ` s ) | 
						
							| 20 | 4 | cv |  |-  f | 
						
							| 21 | 15 | cv |  |-  x | 
						
							| 22 |  | cvsca |  |-  .s | 
						
							| 23 | 5 22 | cfv |  |-  ( .s ` s ) | 
						
							| 24 | 18 | cv |  |-  y | 
						
							| 25 | 21 24 23 | co |  |-  ( x ( .s ` s ) y ) | 
						
							| 26 | 25 20 | cfv |  |-  ( f ` ( x ( .s ` s ) y ) ) | 
						
							| 27 | 7 22 | cfv |  |-  ( .s ` t ) | 
						
							| 28 | 24 20 | cfv |  |-  ( f ` y ) | 
						
							| 29 | 21 28 27 | co |  |-  ( x ( .s ` t ) ( f ` y ) ) | 
						
							| 30 | 26 29 | wceq |  |-  ( f ` ( x ( .s ` s ) y ) ) = ( x ( .s ` t ) ( f ` y ) ) | 
						
							| 31 | 30 18 19 | wral |  |-  A. y e. ( Base ` s ) ( f ` ( x ( .s ` s ) y ) ) = ( x ( .s ` t ) ( f ` y ) ) | 
						
							| 32 | 31 15 17 | wral |  |-  A. x e. ( Base ` w ) A. y e. ( Base ` s ) ( f ` ( x ( .s ` s ) y ) ) = ( x ( .s ` t ) ( f ` y ) ) | 
						
							| 33 | 14 32 | wa |  |-  ( ( Scalar ` t ) = w /\ A. x e. ( Base ` w ) A. y e. ( Base ` s ) ( f ` ( x ( .s ` s ) y ) ) = ( x ( .s ` t ) ( f ` y ) ) ) | 
						
							| 34 | 33 11 10 | wsbc |  |-  [. ( Scalar ` s ) / w ]. ( ( Scalar ` t ) = w /\ A. x e. ( Base ` w ) A. y e. ( Base ` s ) ( f ` ( x ( .s ` s ) y ) ) = ( x ( .s ` t ) ( f ` y ) ) ) | 
						
							| 35 | 34 4 8 | crab |  |-  { f e. ( s GrpHom t ) | [. ( Scalar ` s ) / w ]. ( ( Scalar ` t ) = w /\ A. x e. ( Base ` w ) A. y e. ( Base ` s ) ( f ` ( x ( .s ` s ) y ) ) = ( x ( .s ` t ) ( f ` y ) ) ) } | 
						
							| 36 | 1 3 2 2 35 | cmpo |  |-  ( s e. LMod , t e. LMod |-> { f e. ( s GrpHom t ) | [. ( Scalar ` s ) / w ]. ( ( Scalar ` t ) = w /\ A. x e. ( Base ` w ) A. y e. ( Base ` s ) ( f ` ( x ( .s ` s ) y ) ) = ( x ( .s ` t ) ( f ` y ) ) ) } ) | 
						
							| 37 | 0 36 | wceq |  |-  LMHom = ( s e. LMod , t e. LMod |-> { f e. ( s GrpHom t ) | [. ( Scalar ` s ) / w ]. ( ( Scalar ` t ) = w /\ A. x e. ( Base ` w ) A. y e. ( Base ` s ) ( f ` ( x ( .s ` s ) y ) ) = ( x ( .s ` t ) ( f ` y ) ) ) } ) |