Step |
Hyp |
Ref |
Expression |
0 |
|
clmhm |
|- LMHom |
1 |
|
vs |
|- s |
2 |
|
clmod |
|- LMod |
3 |
|
vt |
|- t |
4 |
|
vf |
|- f |
5 |
1
|
cv |
|- s |
6 |
|
cghm |
|- GrpHom |
7 |
3
|
cv |
|- t |
8 |
5 7 6
|
co |
|- ( s GrpHom t ) |
9 |
|
csca |
|- Scalar |
10 |
5 9
|
cfv |
|- ( Scalar ` s ) |
11 |
|
vw |
|- w |
12 |
7 9
|
cfv |
|- ( Scalar ` t ) |
13 |
11
|
cv |
|- w |
14 |
12 13
|
wceq |
|- ( Scalar ` t ) = w |
15 |
|
vx |
|- x |
16 |
|
cbs |
|- Base |
17 |
13 16
|
cfv |
|- ( Base ` w ) |
18 |
|
vy |
|- y |
19 |
5 16
|
cfv |
|- ( Base ` s ) |
20 |
4
|
cv |
|- f |
21 |
15
|
cv |
|- x |
22 |
|
cvsca |
|- .s |
23 |
5 22
|
cfv |
|- ( .s ` s ) |
24 |
18
|
cv |
|- y |
25 |
21 24 23
|
co |
|- ( x ( .s ` s ) y ) |
26 |
25 20
|
cfv |
|- ( f ` ( x ( .s ` s ) y ) ) |
27 |
7 22
|
cfv |
|- ( .s ` t ) |
28 |
24 20
|
cfv |
|- ( f ` y ) |
29 |
21 28 27
|
co |
|- ( x ( .s ` t ) ( f ` y ) ) |
30 |
26 29
|
wceq |
|- ( f ` ( x ( .s ` s ) y ) ) = ( x ( .s ` t ) ( f ` y ) ) |
31 |
30 18 19
|
wral |
|- A. y e. ( Base ` s ) ( f ` ( x ( .s ` s ) y ) ) = ( x ( .s ` t ) ( f ` y ) ) |
32 |
31 15 17
|
wral |
|- A. x e. ( Base ` w ) A. y e. ( Base ` s ) ( f ` ( x ( .s ` s ) y ) ) = ( x ( .s ` t ) ( f ` y ) ) |
33 |
14 32
|
wa |
|- ( ( Scalar ` t ) = w /\ A. x e. ( Base ` w ) A. y e. ( Base ` s ) ( f ` ( x ( .s ` s ) y ) ) = ( x ( .s ` t ) ( f ` y ) ) ) |
34 |
33 11 10
|
wsbc |
|- [. ( Scalar ` s ) / w ]. ( ( Scalar ` t ) = w /\ A. x e. ( Base ` w ) A. y e. ( Base ` s ) ( f ` ( x ( .s ` s ) y ) ) = ( x ( .s ` t ) ( f ` y ) ) ) |
35 |
34 4 8
|
crab |
|- { f e. ( s GrpHom t ) | [. ( Scalar ` s ) / w ]. ( ( Scalar ` t ) = w /\ A. x e. ( Base ` w ) A. y e. ( Base ` s ) ( f ` ( x ( .s ` s ) y ) ) = ( x ( .s ` t ) ( f ` y ) ) ) } |
36 |
1 3 2 2 35
|
cmpo |
|- ( s e. LMod , t e. LMod |-> { f e. ( s GrpHom t ) | [. ( Scalar ` s ) / w ]. ( ( Scalar ` t ) = w /\ A. x e. ( Base ` w ) A. y e. ( Base ` s ) ( f ` ( x ( .s ` s ) y ) ) = ( x ( .s ` t ) ( f ` y ) ) ) } ) |
37 |
0 36
|
wceq |
|- LMHom = ( s e. LMod , t e. LMod |-> { f e. ( s GrpHom t ) | [. ( Scalar ` s ) / w ]. ( ( Scalar ` t ) = w /\ A. x e. ( Base ` w ) A. y e. ( Base ` s ) ( f ` ( x ( .s ` s ) y ) ) = ( x ( .s ` t ) ( f ` y ) ) ) } ) |