| Step |
Hyp |
Ref |
Expression |
| 0 |
|
clmi |
|- lInvG |
| 1 |
|
vg |
|- g |
| 2 |
|
cvv |
|- _V |
| 3 |
|
vm |
|- m |
| 4 |
|
clng |
|- LineG |
| 5 |
1
|
cv |
|- g |
| 6 |
5 4
|
cfv |
|- ( LineG ` g ) |
| 7 |
6
|
crn |
|- ran ( LineG ` g ) |
| 8 |
|
va |
|- a |
| 9 |
|
cbs |
|- Base |
| 10 |
5 9
|
cfv |
|- ( Base ` g ) |
| 11 |
|
vb |
|- b |
| 12 |
8
|
cv |
|- a |
| 13 |
|
cmid |
|- midG |
| 14 |
5 13
|
cfv |
|- ( midG ` g ) |
| 15 |
11
|
cv |
|- b |
| 16 |
12 15 14
|
co |
|- ( a ( midG ` g ) b ) |
| 17 |
3
|
cv |
|- m |
| 18 |
16 17
|
wcel |
|- ( a ( midG ` g ) b ) e. m |
| 19 |
|
cperpg |
|- perpG |
| 20 |
5 19
|
cfv |
|- ( perpG ` g ) |
| 21 |
12 15 6
|
co |
|- ( a ( LineG ` g ) b ) |
| 22 |
17 21 20
|
wbr |
|- m ( perpG ` g ) ( a ( LineG ` g ) b ) |
| 23 |
12 15
|
wceq |
|- a = b |
| 24 |
22 23
|
wo |
|- ( m ( perpG ` g ) ( a ( LineG ` g ) b ) \/ a = b ) |
| 25 |
18 24
|
wa |
|- ( ( a ( midG ` g ) b ) e. m /\ ( m ( perpG ` g ) ( a ( LineG ` g ) b ) \/ a = b ) ) |
| 26 |
25 11 10
|
crio |
|- ( iota_ b e. ( Base ` g ) ( ( a ( midG ` g ) b ) e. m /\ ( m ( perpG ` g ) ( a ( LineG ` g ) b ) \/ a = b ) ) ) |
| 27 |
8 10 26
|
cmpt |
|- ( a e. ( Base ` g ) |-> ( iota_ b e. ( Base ` g ) ( ( a ( midG ` g ) b ) e. m /\ ( m ( perpG ` g ) ( a ( LineG ` g ) b ) \/ a = b ) ) ) ) |
| 28 |
3 7 27
|
cmpt |
|- ( m e. ran ( LineG ` g ) |-> ( a e. ( Base ` g ) |-> ( iota_ b e. ( Base ` g ) ( ( a ( midG ` g ) b ) e. m /\ ( m ( perpG ` g ) ( a ( LineG ` g ) b ) \/ a = b ) ) ) ) ) |
| 29 |
1 2 28
|
cmpt |
|- ( g e. _V |-> ( m e. ran ( LineG ` g ) |-> ( a e. ( Base ` g ) |-> ( iota_ b e. ( Base ` g ) ( ( a ( midG ` g ) b ) e. m /\ ( m ( perpG ` g ) ( a ( LineG ` g ) b ) \/ a = b ) ) ) ) ) ) |
| 30 |
0 29
|
wceq |
|- lInvG = ( g e. _V |-> ( m e. ran ( LineG ` g ) |-> ( a e. ( Base ` g ) |-> ( iota_ b e. ( Base ` g ) ( ( a ( midG ` g ) b ) e. m /\ ( m ( perpG ` g ) ( a ( LineG ` g ) b ) \/ a = b ) ) ) ) ) ) |