Step |
Hyp |
Ref |
Expression |
0 |
|
clmi |
|- lInvG |
1 |
|
vg |
|- g |
2 |
|
cvv |
|- _V |
3 |
|
vm |
|- m |
4 |
|
clng |
|- LineG |
5 |
1
|
cv |
|- g |
6 |
5 4
|
cfv |
|- ( LineG ` g ) |
7 |
6
|
crn |
|- ran ( LineG ` g ) |
8 |
|
va |
|- a |
9 |
|
cbs |
|- Base |
10 |
5 9
|
cfv |
|- ( Base ` g ) |
11 |
|
vb |
|- b |
12 |
8
|
cv |
|- a |
13 |
|
cmid |
|- midG |
14 |
5 13
|
cfv |
|- ( midG ` g ) |
15 |
11
|
cv |
|- b |
16 |
12 15 14
|
co |
|- ( a ( midG ` g ) b ) |
17 |
3
|
cv |
|- m |
18 |
16 17
|
wcel |
|- ( a ( midG ` g ) b ) e. m |
19 |
|
cperpg |
|- perpG |
20 |
5 19
|
cfv |
|- ( perpG ` g ) |
21 |
12 15 6
|
co |
|- ( a ( LineG ` g ) b ) |
22 |
17 21 20
|
wbr |
|- m ( perpG ` g ) ( a ( LineG ` g ) b ) |
23 |
12 15
|
wceq |
|- a = b |
24 |
22 23
|
wo |
|- ( m ( perpG ` g ) ( a ( LineG ` g ) b ) \/ a = b ) |
25 |
18 24
|
wa |
|- ( ( a ( midG ` g ) b ) e. m /\ ( m ( perpG ` g ) ( a ( LineG ` g ) b ) \/ a = b ) ) |
26 |
25 11 10
|
crio |
|- ( iota_ b e. ( Base ` g ) ( ( a ( midG ` g ) b ) e. m /\ ( m ( perpG ` g ) ( a ( LineG ` g ) b ) \/ a = b ) ) ) |
27 |
8 10 26
|
cmpt |
|- ( a e. ( Base ` g ) |-> ( iota_ b e. ( Base ` g ) ( ( a ( midG ` g ) b ) e. m /\ ( m ( perpG ` g ) ( a ( LineG ` g ) b ) \/ a = b ) ) ) ) |
28 |
3 7 27
|
cmpt |
|- ( m e. ran ( LineG ` g ) |-> ( a e. ( Base ` g ) |-> ( iota_ b e. ( Base ` g ) ( ( a ( midG ` g ) b ) e. m /\ ( m ( perpG ` g ) ( a ( LineG ` g ) b ) \/ a = b ) ) ) ) ) |
29 |
1 2 28
|
cmpt |
|- ( g e. _V |-> ( m e. ran ( LineG ` g ) |-> ( a e. ( Base ` g ) |-> ( iota_ b e. ( Base ` g ) ( ( a ( midG ` g ) b ) e. m /\ ( m ( perpG ` g ) ( a ( LineG ` g ) b ) \/ a = b ) ) ) ) ) ) |
30 |
0 29
|
wceq |
|- lInvG = ( g e. _V |-> ( m e. ran ( LineG ` g ) |-> ( a e. ( Base ` g ) |-> ( iota_ b e. ( Base ` g ) ( ( a ( midG ` g ) b ) e. m /\ ( m ( perpG ` g ) ( a ( LineG ` g ) b ) \/ a = b ) ) ) ) ) ) |