Step |
Hyp |
Ref |
Expression |
0 |
|
clmod |
|- LMod |
1 |
|
vg |
|- g |
2 |
|
cgrp |
|- Grp |
3 |
|
cbs |
|- Base |
4 |
1
|
cv |
|- g |
5 |
4 3
|
cfv |
|- ( Base ` g ) |
6 |
|
vv |
|- v |
7 |
|
cplusg |
|- +g |
8 |
4 7
|
cfv |
|- ( +g ` g ) |
9 |
|
va |
|- a |
10 |
|
csca |
|- Scalar |
11 |
4 10
|
cfv |
|- ( Scalar ` g ) |
12 |
|
vf |
|- f |
13 |
|
cvsca |
|- .s |
14 |
4 13
|
cfv |
|- ( .s ` g ) |
15 |
|
vs |
|- s |
16 |
12
|
cv |
|- f |
17 |
16 3
|
cfv |
|- ( Base ` f ) |
18 |
|
vk |
|- k |
19 |
16 7
|
cfv |
|- ( +g ` f ) |
20 |
|
vp |
|- p |
21 |
|
cmulr |
|- .r |
22 |
16 21
|
cfv |
|- ( .r ` f ) |
23 |
|
vt |
|- t |
24 |
|
crg |
|- Ring |
25 |
16 24
|
wcel |
|- f e. Ring |
26 |
|
vq |
|- q |
27 |
18
|
cv |
|- k |
28 |
|
vr |
|- r |
29 |
|
vx |
|- x |
30 |
6
|
cv |
|- v |
31 |
|
vw |
|- w |
32 |
28
|
cv |
|- r |
33 |
15
|
cv |
|- s |
34 |
31
|
cv |
|- w |
35 |
32 34 33
|
co |
|- ( r s w ) |
36 |
35 30
|
wcel |
|- ( r s w ) e. v |
37 |
9
|
cv |
|- a |
38 |
29
|
cv |
|- x |
39 |
34 38 37
|
co |
|- ( w a x ) |
40 |
32 39 33
|
co |
|- ( r s ( w a x ) ) |
41 |
32 38 33
|
co |
|- ( r s x ) |
42 |
35 41 37
|
co |
|- ( ( r s w ) a ( r s x ) ) |
43 |
40 42
|
wceq |
|- ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) |
44 |
26
|
cv |
|- q |
45 |
20
|
cv |
|- p |
46 |
44 32 45
|
co |
|- ( q p r ) |
47 |
46 34 33
|
co |
|- ( ( q p r ) s w ) |
48 |
44 34 33
|
co |
|- ( q s w ) |
49 |
48 35 37
|
co |
|- ( ( q s w ) a ( r s w ) ) |
50 |
47 49
|
wceq |
|- ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) |
51 |
36 43 50
|
w3a |
|- ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) |
52 |
23
|
cv |
|- t |
53 |
44 32 52
|
co |
|- ( q t r ) |
54 |
53 34 33
|
co |
|- ( ( q t r ) s w ) |
55 |
44 35 33
|
co |
|- ( q s ( r s w ) ) |
56 |
54 55
|
wceq |
|- ( ( q t r ) s w ) = ( q s ( r s w ) ) |
57 |
|
cur |
|- 1r |
58 |
16 57
|
cfv |
|- ( 1r ` f ) |
59 |
58 34 33
|
co |
|- ( ( 1r ` f ) s w ) |
60 |
59 34
|
wceq |
|- ( ( 1r ` f ) s w ) = w |
61 |
56 60
|
wa |
|- ( ( ( q t r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) |
62 |
51 61
|
wa |
|- ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q t r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) |
63 |
62 31 30
|
wral |
|- A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q t r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) |
64 |
63 29 30
|
wral |
|- A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q t r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) |
65 |
64 28 27
|
wral |
|- A. r e. k A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q t r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) |
66 |
65 26 27
|
wral |
|- A. q e. k A. r e. k A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q t r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) |
67 |
25 66
|
wa |
|- ( f e. Ring /\ A. q e. k A. r e. k A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q t r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) ) |
68 |
67 23 22
|
wsbc |
|- [. ( .r ` f ) / t ]. ( f e. Ring /\ A. q e. k A. r e. k A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q t r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) ) |
69 |
68 20 19
|
wsbc |
|- [. ( +g ` f ) / p ]. [. ( .r ` f ) / t ]. ( f e. Ring /\ A. q e. k A. r e. k A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q t r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) ) |
70 |
69 18 17
|
wsbc |
|- [. ( Base ` f ) / k ]. [. ( +g ` f ) / p ]. [. ( .r ` f ) / t ]. ( f e. Ring /\ A. q e. k A. r e. k A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q t r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) ) |
71 |
70 15 14
|
wsbc |
|- [. ( .s ` g ) / s ]. [. ( Base ` f ) / k ]. [. ( +g ` f ) / p ]. [. ( .r ` f ) / t ]. ( f e. Ring /\ A. q e. k A. r e. k A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q t r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) ) |
72 |
71 12 11
|
wsbc |
|- [. ( Scalar ` g ) / f ]. [. ( .s ` g ) / s ]. [. ( Base ` f ) / k ]. [. ( +g ` f ) / p ]. [. ( .r ` f ) / t ]. ( f e. Ring /\ A. q e. k A. r e. k A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q t r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) ) |
73 |
72 9 8
|
wsbc |
|- [. ( +g ` g ) / a ]. [. ( Scalar ` g ) / f ]. [. ( .s ` g ) / s ]. [. ( Base ` f ) / k ]. [. ( +g ` f ) / p ]. [. ( .r ` f ) / t ]. ( f e. Ring /\ A. q e. k A. r e. k A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q t r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) ) |
74 |
73 6 5
|
wsbc |
|- [. ( Base ` g ) / v ]. [. ( +g ` g ) / a ]. [. ( Scalar ` g ) / f ]. [. ( .s ` g ) / s ]. [. ( Base ` f ) / k ]. [. ( +g ` f ) / p ]. [. ( .r ` f ) / t ]. ( f e. Ring /\ A. q e. k A. r e. k A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q t r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) ) |
75 |
74 1 2
|
crab |
|- { g e. Grp | [. ( Base ` g ) / v ]. [. ( +g ` g ) / a ]. [. ( Scalar ` g ) / f ]. [. ( .s ` g ) / s ]. [. ( Base ` f ) / k ]. [. ( +g ` f ) / p ]. [. ( .r ` f ) / t ]. ( f e. Ring /\ A. q e. k A. r e. k A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q t r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) ) } |
76 |
0 75
|
wceq |
|- LMod = { g e. Grp | [. ( Base ` g ) / v ]. [. ( +g ` g ) / a ]. [. ( Scalar ` g ) / f ]. [. ( .s ` g ) / s ]. [. ( Base ` f ) / k ]. [. ( +g ` f ) / p ]. [. ( .r ` f ) / t ]. ( f e. Ring /\ A. q e. k A. r e. k A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q t r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) ) } |