Metamath Proof Explorer


Definition df-lnr

Description: A ring isleft-Noetherian iff it is Noetherian as a left module over itself. (Contributed by Stefan O'Rear, 24-Jan-2015)

Ref Expression
Assertion df-lnr
|- LNoeR = { a e. Ring | ( ringLMod ` a ) e. LNoeM }

Detailed syntax breakdown

Step Hyp Ref Expression
0 clnr
 |-  LNoeR
1 va
 |-  a
2 crg
 |-  Ring
3 crglmod
 |-  ringLMod
4 1 cv
 |-  a
5 4 3 cfv
 |-  ( ringLMod ` a )
6 clnm
 |-  LNoeM
7 5 6 wcel
 |-  ( ringLMod ` a ) e. LNoeM
8 7 1 2 crab
 |-  { a e. Ring | ( ringLMod ` a ) e. LNoeM }
9 0 8 wceq
 |-  LNoeR = { a e. Ring | ( ringLMod ` a ) e. LNoeM }