Description: Define the natural logarithm function on complex numbers. It is defined as the principal value, that is, the inverse of the exponential whose imaginary part lies in the interval (-pi, pi]. See http://en.wikipedia.org/wiki/Natural_logarithm and https://en.wikipedia.org/wiki/Complex_logarithm . (Contributed by Paul Chapman, 21-Apr-2008)
Ref | Expression | ||
---|---|---|---|
Assertion | df-log | |- log = `' ( exp |` ( `' Im " ( -u _pi (,] _pi ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | clog | |- log |
|
1 | ce | |- exp |
|
2 | cim | |- Im |
|
3 | 2 | ccnv | |- `' Im |
4 | cpi | |- _pi |
|
5 | 4 | cneg | |- -u _pi |
6 | cioc | |- (,] |
|
7 | 5 4 6 | co | |- ( -u _pi (,] _pi ) |
8 | 3 7 | cima | |- ( `' Im " ( -u _pi (,] _pi ) ) |
9 | 1 8 | cres | |- ( exp |` ( `' Im " ( -u _pi (,] _pi ) ) ) |
10 | 9 | ccnv | |- `' ( exp |` ( `' Im " ( -u _pi (,] _pi ) ) ) |
11 | 0 10 | wceq | |- log = `' ( exp |` ( `' Im " ( -u _pi (,] _pi ) ) ) |