Metamath Proof Explorer


Definition df-log

Description: Define the natural logarithm function on complex numbers. It is defined as the principal value, that is, the inverse of the exponential whose imaginary part lies in the interval (-pi, pi]. See http://en.wikipedia.org/wiki/Natural_logarithm and https://en.wikipedia.org/wiki/Complex_logarithm . (Contributed by Paul Chapman, 21-Apr-2008)

Ref Expression
Assertion df-log
|- log = `' ( exp |` ( `' Im " ( -u _pi (,] _pi ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 clog
 |-  log
1 ce
 |-  exp
2 cim
 |-  Im
3 2 ccnv
 |-  `' Im
4 cpi
 |-  _pi
5 4 cneg
 |-  -u _pi
6 cioc
 |-  (,]
7 5 4 6 co
 |-  ( -u _pi (,] _pi )
8 3 7 cima
 |-  ( `' Im " ( -u _pi (,] _pi ) )
9 1 8 cres
 |-  ( exp |` ( `' Im " ( -u _pi (,] _pi ) ) )
10 9 ccnv
 |-  `' ( exp |` ( `' Im " ( -u _pi (,] _pi ) ) )
11 0 10 wceq
 |-  log = `' ( exp |` ( `' Im " ( -u _pi (,] _pi ) ) )