Metamath Proof Explorer


Definition df-logb

Description: Define the logb operator. This is the logarithm generalized to an arbitrary base. It can be used as ( B logb X ) for "log base B of X". In the most common traditional notation, base B is a subscript of "log". The definition is according to Wikipedia "Complex logarithm": https://en.wikipedia.org/wiki/Complex_logarithm#Logarithms_to_other_bases (10-Jun-2020). (Contributed by David A. Wheeler, 21-Jan-2017)

Ref Expression
Assertion df-logb
|- logb = ( x e. ( CC \ { 0 , 1 } ) , y e. ( CC \ { 0 } ) |-> ( ( log ` y ) / ( log ` x ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 clogb
 |-  logb
1 vx
 |-  x
2 cc
 |-  CC
3 cc0
 |-  0
4 c1
 |-  1
5 3 4 cpr
 |-  { 0 , 1 }
6 2 5 cdif
 |-  ( CC \ { 0 , 1 } )
7 vy
 |-  y
8 3 csn
 |-  { 0 }
9 2 8 cdif
 |-  ( CC \ { 0 } )
10 clog
 |-  log
11 7 cv
 |-  y
12 11 10 cfv
 |-  ( log ` y )
13 cdiv
 |-  /
14 1 cv
 |-  x
15 14 10 cfv
 |-  ( log ` x )
16 12 15 13 co
 |-  ( ( log ` y ) / ( log ` x ) )
17 1 7 6 9 16 cmpo
 |-  ( x e. ( CC \ { 0 , 1 } ) , y e. ( CC \ { 0 } ) |-> ( ( log ` y ) / ( log ` x ) ) )
18 0 17 wceq
 |-  logb = ( x e. ( CC \ { 0 , 1 } ) , y e. ( CC \ { 0 } ) |-> ( ( log ` y ) / ( log ` x ) ) )