Description: Define the logb operator. This is the logarithm generalized to an arbitrary base. It can be used as ( B logb X ) for "log base B of X". In the most common traditional notation, base B is a subscript of "log". The definition is according to Wikipedia "Complex logarithm": https://en.wikipedia.org/wiki/Complex_logarithm#Logarithms_to_other_bases (10-Jun-2020). (Contributed by David A. Wheeler, 21-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | df-logb | |- logb = ( x e. ( CC \ { 0 , 1 } ) , y e. ( CC \ { 0 } ) |-> ( ( log ` y ) / ( log ` x ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | clogb | |- logb |
|
1 | vx | |- x |
|
2 | cc | |- CC |
|
3 | cc0 | |- 0 |
|
4 | c1 | |- 1 |
|
5 | 3 4 | cpr | |- { 0 , 1 } |
6 | 2 5 | cdif | |- ( CC \ { 0 , 1 } ) |
7 | vy | |- y |
|
8 | 3 | csn | |- { 0 } |
9 | 2 8 | cdif | |- ( CC \ { 0 } ) |
10 | clog | |- log |
|
11 | 7 | cv | |- y |
12 | 11 10 | cfv | |- ( log ` y ) |
13 | cdiv | |- / |
|
14 | 1 | cv | |- x |
15 | 14 10 | cfv | |- ( log ` x ) |
16 | 12 15 13 | co | |- ( ( log ` y ) / ( log ` x ) ) |
17 | 1 7 6 9 16 | cmpo | |- ( x e. ( CC \ { 0 , 1 } ) , y e. ( CC \ { 0 } ) |-> ( ( log ` y ) / ( log ` x ) ) ) |
18 | 0 17 | wceq | |- logb = ( x e. ( CC \ { 0 , 1 } ) , y e. ( CC \ { 0 } ) |-> ( ( log ` y ) / ( log ` x ) ) ) |