Step |
Hyp |
Ref |
Expression |
0 |
|
clp |
|- limPt |
1 |
|
vj |
|- j |
2 |
|
ctop |
|- Top |
3 |
|
vx |
|- x |
4 |
1
|
cv |
|- j |
5 |
4
|
cuni |
|- U. j |
6 |
5
|
cpw |
|- ~P U. j |
7 |
|
vy |
|- y |
8 |
7
|
cv |
|- y |
9 |
|
ccl |
|- cls |
10 |
4 9
|
cfv |
|- ( cls ` j ) |
11 |
3
|
cv |
|- x |
12 |
8
|
csn |
|- { y } |
13 |
11 12
|
cdif |
|- ( x \ { y } ) |
14 |
13 10
|
cfv |
|- ( ( cls ` j ) ` ( x \ { y } ) ) |
15 |
8 14
|
wcel |
|- y e. ( ( cls ` j ) ` ( x \ { y } ) ) |
16 |
15 7
|
cab |
|- { y | y e. ( ( cls ` j ) ` ( x \ { y } ) ) } |
17 |
3 6 16
|
cmpt |
|- ( x e. ~P U. j |-> { y | y e. ( ( cls ` j ) ` ( x \ { y } ) ) } ) |
18 |
1 2 17
|
cmpt |
|- ( j e. Top |-> ( x e. ~P U. j |-> { y | y e. ( ( cls ` j ) ` ( x \ { y } ) ) } ) ) |
19 |
0 18
|
wceq |
|- limPt = ( j e. Top |-> ( x e. ~P U. j |-> { y | y e. ( ( cls ` j ) ` ( x \ { y } ) ) } ) ) |