| Step | Hyp | Ref | Expression | 
						
							| 0 |  | clp |  |-  limPt | 
						
							| 1 |  | vj |  |-  j | 
						
							| 2 |  | ctop |  |-  Top | 
						
							| 3 |  | vx |  |-  x | 
						
							| 4 | 1 | cv |  |-  j | 
						
							| 5 | 4 | cuni |  |-  U. j | 
						
							| 6 | 5 | cpw |  |-  ~P U. j | 
						
							| 7 |  | vy |  |-  y | 
						
							| 8 | 7 | cv |  |-  y | 
						
							| 9 |  | ccl |  |-  cls | 
						
							| 10 | 4 9 | cfv |  |-  ( cls ` j ) | 
						
							| 11 | 3 | cv |  |-  x | 
						
							| 12 | 8 | csn |  |-  { y } | 
						
							| 13 | 11 12 | cdif |  |-  ( x \ { y } ) | 
						
							| 14 | 13 10 | cfv |  |-  ( ( cls ` j ) ` ( x \ { y } ) ) | 
						
							| 15 | 8 14 | wcel |  |-  y e. ( ( cls ` j ) ` ( x \ { y } ) ) | 
						
							| 16 | 15 7 | cab |  |-  { y | y e. ( ( cls ` j ) ` ( x \ { y } ) ) } | 
						
							| 17 | 3 6 16 | cmpt |  |-  ( x e. ~P U. j |-> { y | y e. ( ( cls ` j ) ` ( x \ { y } ) ) } ) | 
						
							| 18 | 1 2 17 | cmpt |  |-  ( j e. Top |-> ( x e. ~P U. j |-> { y | y e. ( ( cls ` j ) ` ( x \ { y } ) ) } ) ) | 
						
							| 19 | 0 18 | wceq |  |-  limPt = ( j e. Top |-> ( x e. ~P U. j |-> { y | y e. ( ( cls ` j ) ` ( x \ { y } ) ) } ) ) |