Description: Define the class of left principal ideals of a ring, which are ideals with a single generator. (Contributed by Stefan O'Rear, 3-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-lpidl | |- LPIdeal = ( w e. Ring |-> U_ g e. ( Base ` w ) { ( ( RSpan ` w ) ` { g } ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | clpidl | |- LPIdeal |
|
| 1 | vw | |- w |
|
| 2 | crg | |- Ring |
|
| 3 | vg | |- g |
|
| 4 | cbs | |- Base |
|
| 5 | 1 | cv | |- w |
| 6 | 5 4 | cfv | |- ( Base ` w ) |
| 7 | crsp | |- RSpan |
|
| 8 | 5 7 | cfv | |- ( RSpan ` w ) |
| 9 | 3 | cv | |- g |
| 10 | 9 | csn | |- { g } |
| 11 | 10 8 | cfv | |- ( ( RSpan ` w ) ` { g } ) |
| 12 | 11 | csn | |- { ( ( RSpan ` w ) ` { g } ) } |
| 13 | 3 6 12 | ciun | |- U_ g e. ( Base ` w ) { ( ( RSpan ` w ) ` { g } ) } |
| 14 | 1 2 13 | cmpt | |- ( w e. Ring |-> U_ g e. ( Base ` w ) { ( ( RSpan ` w ) ` { g } ) } ) |
| 15 | 0 14 | wceq | |- LPIdeal = ( w e. Ring |-> U_ g e. ( Base ` w ) { ( ( RSpan ` w ) ` { g } ) } ) |