Metamath Proof Explorer


Definition df-lpidl

Description: Define the class of left principal ideals of a ring, which are ideals with a single generator. (Contributed by Stefan O'Rear, 3-Jan-2015)

Ref Expression
Assertion df-lpidl
|- LPIdeal = ( w e. Ring |-> U_ g e. ( Base ` w ) { ( ( RSpan ` w ) ` { g } ) } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 clpidl
 |-  LPIdeal
1 vw
 |-  w
2 crg
 |-  Ring
3 vg
 |-  g
4 cbs
 |-  Base
5 1 cv
 |-  w
6 5 4 cfv
 |-  ( Base ` w )
7 crsp
 |-  RSpan
8 5 7 cfv
 |-  ( RSpan ` w )
9 3 cv
 |-  g
10 9 csn
 |-  { g }
11 10 8 cfv
 |-  ( ( RSpan ` w ) ` { g } )
12 11 csn
 |-  { ( ( RSpan ` w ) ` { g } ) }
13 3 6 12 ciun
 |-  U_ g e. ( Base ` w ) { ( ( RSpan ` w ) ` { g } ) }
14 1 2 13 cmpt
 |-  ( w e. Ring |-> U_ g e. ( Base ` w ) { ( ( RSpan ` w ) ` { g } ) } )
15 0 14 wceq
 |-  LPIdeal = ( w e. Ring |-> U_ g e. ( Base ` w ) { ( ( RSpan ` w ) ` { g } ) } )