Description: Define the class of left principal ideal rings, rings where every left ideal has a single generator. (Contributed by Stefan O'Rear, 3-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-lpir | |- LPIR = { w e. Ring | ( LIdeal ` w ) = ( LPIdeal ` w ) } | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 0 | clpir | |- LPIR | |
| 1 | vw | |- w | |
| 2 | crg | |- Ring | |
| 3 | clidl | |- LIdeal | |
| 4 | 1 | cv | |- w | 
| 5 | 4 3 | cfv | |- ( LIdeal ` w ) | 
| 6 | clpidl | |- LPIdeal | |
| 7 | 4 6 | cfv | |- ( LPIdeal ` w ) | 
| 8 | 5 7 | wceq | |- ( LIdeal ` w ) = ( LPIdeal ` w ) | 
| 9 | 8 1 2 | crab |  |-  { w e. Ring | ( LIdeal ` w ) = ( LPIdeal ` w ) } | 
| 10 | 0 9 | wceq |  |-  LPIR = { w e. Ring | ( LIdeal ` w ) = ( LPIdeal ` w ) } |