Metamath Proof Explorer


Definition df-lpir

Description: Define the class of left principal ideal rings, rings where every left ideal has a single generator. (Contributed by Stefan O'Rear, 3-Jan-2015)

Ref Expression
Assertion df-lpir
|- LPIR = { w e. Ring | ( LIdeal ` w ) = ( LPIdeal ` w ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 clpir
 |-  LPIR
1 vw
 |-  w
2 crg
 |-  Ring
3 clidl
 |-  LIdeal
4 1 cv
 |-  w
5 4 3 cfv
 |-  ( LIdeal ` w )
6 clpidl
 |-  LPIdeal
7 4 6 cfv
 |-  ( LPIdeal ` w )
8 5 7 wceq
 |-  ( LIdeal ` w ) = ( LPIdeal ` w )
9 8 1 2 crab
 |-  { w e. Ring | ( LIdeal ` w ) = ( LPIdeal ` w ) }
10 0 9 wceq
 |-  LPIR = { w e. Ring | ( LIdeal ` w ) = ( LPIdeal ` w ) }