| Step | Hyp | Ref | Expression | 
						
							| 0 |  | clsm |  |-  LSSum | 
						
							| 1 |  | vw |  |-  w | 
						
							| 2 |  | cvv |  |-  _V | 
						
							| 3 |  | vt |  |-  t | 
						
							| 4 |  | cbs |  |-  Base | 
						
							| 5 | 1 | cv |  |-  w | 
						
							| 6 | 5 4 | cfv |  |-  ( Base ` w ) | 
						
							| 7 | 6 | cpw |  |-  ~P ( Base ` w ) | 
						
							| 8 |  | vu |  |-  u | 
						
							| 9 |  | vx |  |-  x | 
						
							| 10 | 3 | cv |  |-  t | 
						
							| 11 |  | vy |  |-  y | 
						
							| 12 | 8 | cv |  |-  u | 
						
							| 13 | 9 | cv |  |-  x | 
						
							| 14 |  | cplusg |  |-  +g | 
						
							| 15 | 5 14 | cfv |  |-  ( +g ` w ) | 
						
							| 16 | 11 | cv |  |-  y | 
						
							| 17 | 13 16 15 | co |  |-  ( x ( +g ` w ) y ) | 
						
							| 18 | 9 11 10 12 17 | cmpo |  |-  ( x e. t , y e. u |-> ( x ( +g ` w ) y ) ) | 
						
							| 19 | 18 | crn |  |-  ran ( x e. t , y e. u |-> ( x ( +g ` w ) y ) ) | 
						
							| 20 | 3 8 7 7 19 | cmpo |  |-  ( t e. ~P ( Base ` w ) , u e. ~P ( Base ` w ) |-> ran ( x e. t , y e. u |-> ( x ( +g ` w ) y ) ) ) | 
						
							| 21 | 1 2 20 | cmpt |  |-  ( w e. _V |-> ( t e. ~P ( Base ` w ) , u e. ~P ( Base ` w ) |-> ran ( x e. t , y e. u |-> ( x ( +g ` w ) y ) ) ) ) | 
						
							| 22 | 0 21 | wceq |  |-  LSSum = ( w e. _V |-> ( t e. ~P ( Base ` w ) , u e. ~P ( Base ` w ) |-> ran ( x e. t , y e. u |-> ( x ( +g ` w ) y ) ) ) ) |