Step |
Hyp |
Ref |
Expression |
0 |
|
clss |
|- LSubSp |
1 |
|
vw |
|- w |
2 |
|
cvv |
|- _V |
3 |
|
vs |
|- s |
4 |
|
cbs |
|- Base |
5 |
1
|
cv |
|- w |
6 |
5 4
|
cfv |
|- ( Base ` w ) |
7 |
6
|
cpw |
|- ~P ( Base ` w ) |
8 |
|
c0 |
|- (/) |
9 |
8
|
csn |
|- { (/) } |
10 |
7 9
|
cdif |
|- ( ~P ( Base ` w ) \ { (/) } ) |
11 |
|
vx |
|- x |
12 |
|
csca |
|- Scalar |
13 |
5 12
|
cfv |
|- ( Scalar ` w ) |
14 |
13 4
|
cfv |
|- ( Base ` ( Scalar ` w ) ) |
15 |
|
va |
|- a |
16 |
3
|
cv |
|- s |
17 |
|
vb |
|- b |
18 |
11
|
cv |
|- x |
19 |
|
cvsca |
|- .s |
20 |
5 19
|
cfv |
|- ( .s ` w ) |
21 |
15
|
cv |
|- a |
22 |
18 21 20
|
co |
|- ( x ( .s ` w ) a ) |
23 |
|
cplusg |
|- +g |
24 |
5 23
|
cfv |
|- ( +g ` w ) |
25 |
17
|
cv |
|- b |
26 |
22 25 24
|
co |
|- ( ( x ( .s ` w ) a ) ( +g ` w ) b ) |
27 |
26 16
|
wcel |
|- ( ( x ( .s ` w ) a ) ( +g ` w ) b ) e. s |
28 |
27 17 16
|
wral |
|- A. b e. s ( ( x ( .s ` w ) a ) ( +g ` w ) b ) e. s |
29 |
28 15 16
|
wral |
|- A. a e. s A. b e. s ( ( x ( .s ` w ) a ) ( +g ` w ) b ) e. s |
30 |
29 11 14
|
wral |
|- A. x e. ( Base ` ( Scalar ` w ) ) A. a e. s A. b e. s ( ( x ( .s ` w ) a ) ( +g ` w ) b ) e. s |
31 |
30 3 10
|
crab |
|- { s e. ( ~P ( Base ` w ) \ { (/) } ) | A. x e. ( Base ` ( Scalar ` w ) ) A. a e. s A. b e. s ( ( x ( .s ` w ) a ) ( +g ` w ) b ) e. s } |
32 |
1 2 31
|
cmpt |
|- ( w e. _V |-> { s e. ( ~P ( Base ` w ) \ { (/) } ) | A. x e. ( Base ` ( Scalar ` w ) ) A. a e. s A. b e. s ( ( x ( .s ` w ) a ) ( +g ` w ) b ) e. s } ) |
33 |
0 32
|
wceq |
|- LSubSp = ( w e. _V |-> { s e. ( ~P ( Base ` w ) \ { (/) } ) | A. x e. ( Base ` ( Scalar ` w ) ) A. a e. s A. b e. s ( ( x ( .s ` w ) a ) ( +g ` w ) b ) e. s } ) |