Metamath Proof Explorer


Definition df-lss

Description: Define the set of linear subspaces of a left module or left vector space. (Contributed by NM, 8-Dec-2013)

Ref Expression
Assertion df-lss
|- LSubSp = ( w e. _V |-> { s e. ( ~P ( Base ` w ) \ { (/) } ) | A. x e. ( Base ` ( Scalar ` w ) ) A. a e. s A. b e. s ( ( x ( .s ` w ) a ) ( +g ` w ) b ) e. s } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 clss
 |-  LSubSp
1 vw
 |-  w
2 cvv
 |-  _V
3 vs
 |-  s
4 cbs
 |-  Base
5 1 cv
 |-  w
6 5 4 cfv
 |-  ( Base ` w )
7 6 cpw
 |-  ~P ( Base ` w )
8 c0
 |-  (/)
9 8 csn
 |-  { (/) }
10 7 9 cdif
 |-  ( ~P ( Base ` w ) \ { (/) } )
11 vx
 |-  x
12 csca
 |-  Scalar
13 5 12 cfv
 |-  ( Scalar ` w )
14 13 4 cfv
 |-  ( Base ` ( Scalar ` w ) )
15 va
 |-  a
16 3 cv
 |-  s
17 vb
 |-  b
18 11 cv
 |-  x
19 cvsca
 |-  .s
20 5 19 cfv
 |-  ( .s ` w )
21 15 cv
 |-  a
22 18 21 20 co
 |-  ( x ( .s ` w ) a )
23 cplusg
 |-  +g
24 5 23 cfv
 |-  ( +g ` w )
25 17 cv
 |-  b
26 22 25 24 co
 |-  ( ( x ( .s ` w ) a ) ( +g ` w ) b )
27 26 16 wcel
 |-  ( ( x ( .s ` w ) a ) ( +g ` w ) b ) e. s
28 27 17 16 wral
 |-  A. b e. s ( ( x ( .s ` w ) a ) ( +g ` w ) b ) e. s
29 28 15 16 wral
 |-  A. a e. s A. b e. s ( ( x ( .s ` w ) a ) ( +g ` w ) b ) e. s
30 29 11 14 wral
 |-  A. x e. ( Base ` ( Scalar ` w ) ) A. a e. s A. b e. s ( ( x ( .s ` w ) a ) ( +g ` w ) b ) e. s
31 30 3 10 crab
 |-  { s e. ( ~P ( Base ` w ) \ { (/) } ) | A. x e. ( Base ` ( Scalar ` w ) ) A. a e. s A. b e. s ( ( x ( .s ` w ) a ) ( +g ` w ) b ) e. s }
32 1 2 31 cmpt
 |-  ( w e. _V |-> { s e. ( ~P ( Base ` w ) \ { (/) } ) | A. x e. ( Base ` ( Scalar ` w ) ) A. a e. s A. b e. s ( ( x ( .s ` w ) a ) ( +g ` w ) b ) e. s } )
33 0 32 wceq
 |-  LSubSp = ( w e. _V |-> { s e. ( ~P ( Base ` w ) \ { (/) } ) | A. x e. ( Base ` ( Scalar ` w ) ) A. a e. s A. b e. s ( ( x ( .s ` w ) a ) ( +g ` w ) b ) e. s } )