Step |
Hyp |
Ref |
Expression |
0 |
|
cltb |
|- |
1 |
|
vr |
|- r |
2 |
|
cvv |
|- _V |
3 |
|
vi |
|- i |
4 |
|
vx |
|- x |
5 |
|
vy |
|- y |
6 |
4
|
cv |
|- x |
7 |
5
|
cv |
|- y |
8 |
6 7
|
cpr |
|- { x , y } |
9 |
|
vh |
|- h |
10 |
|
cn0 |
|- NN0 |
11 |
|
cmap |
|- ^m |
12 |
3
|
cv |
|- i |
13 |
10 12 11
|
co |
|- ( NN0 ^m i ) |
14 |
9
|
cv |
|- h |
15 |
14
|
ccnv |
|- `' h |
16 |
|
cn |
|- NN |
17 |
15 16
|
cima |
|- ( `' h " NN ) |
18 |
|
cfn |
|- Fin |
19 |
17 18
|
wcel |
|- ( `' h " NN ) e. Fin |
20 |
19 9 13
|
crab |
|- { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } |
21 |
8 20
|
wss |
|- { x , y } C_ { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } |
22 |
|
vz |
|- z |
23 |
22
|
cv |
|- z |
24 |
23 6
|
cfv |
|- ( x ` z ) |
25 |
|
clt |
|- < |
26 |
23 7
|
cfv |
|- ( y ` z ) |
27 |
24 26 25
|
wbr |
|- ( x ` z ) < ( y ` z ) |
28 |
|
vw |
|- w |
29 |
1
|
cv |
|- r |
30 |
28
|
cv |
|- w |
31 |
23 30 29
|
wbr |
|- z r w |
32 |
30 6
|
cfv |
|- ( x ` w ) |
33 |
30 7
|
cfv |
|- ( y ` w ) |
34 |
32 33
|
wceq |
|- ( x ` w ) = ( y ` w ) |
35 |
31 34
|
wi |
|- ( z r w -> ( x ` w ) = ( y ` w ) ) |
36 |
35 28 12
|
wral |
|- A. w e. i ( z r w -> ( x ` w ) = ( y ` w ) ) |
37 |
27 36
|
wa |
|- ( ( x ` z ) < ( y ` z ) /\ A. w e. i ( z r w -> ( x ` w ) = ( y ` w ) ) ) |
38 |
37 22 12
|
wrex |
|- E. z e. i ( ( x ` z ) < ( y ` z ) /\ A. w e. i ( z r w -> ( x ` w ) = ( y ` w ) ) ) |
39 |
21 38
|
wa |
|- ( { x , y } C_ { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } /\ E. z e. i ( ( x ` z ) < ( y ` z ) /\ A. w e. i ( z r w -> ( x ` w ) = ( y ` w ) ) ) ) |
40 |
39 4 5
|
copab |
|- { <. x , y >. | ( { x , y } C_ { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } /\ E. z e. i ( ( x ` z ) < ( y ` z ) /\ A. w e. i ( z r w -> ( x ` w ) = ( y ` w ) ) ) ) } |
41 |
1 3 2 2 40
|
cmpo |
|- ( r e. _V , i e. _V |-> { <. x , y >. | ( { x , y } C_ { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } /\ E. z e. i ( ( x ` z ) < ( y ` z ) /\ A. w e. i ( z r w -> ( x ` w ) = ( y ` w ) ) ) ) } ) |
42 |
0 41
|
wceq |
|- { <. x , y >. | ( { x , y } C_ { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } /\ E. z e. i ( ( x ` z ) < ( y ` z ) /\ A. w e. i ( z r w -> ( x ` w ) = ( y ` w ) ) ) ) } ) |