Description: Define ordering on positive reals. This is a "temporary" set used in the construction of complex numbers df-c , and is intended to be used only by the construction. From Proposition 9-3.2 of Gleason p. 122. (Contributed by NM, 14-Feb-1996) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | df-ltp | |- |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cltp | |- |
|
1 | vx | |- x |
|
2 | vy | |- y |
|
3 | 1 | cv | |- x |
4 | cnp | |- P. |
|
5 | 3 4 | wcel | |- x e. P. |
6 | 2 | cv | |- y |
7 | 6 4 | wcel | |- y e. P. |
8 | 5 7 | wa | |- ( x e. P. /\ y e. P. ) |
9 | 3 6 | wpss | |- x C. y |
10 | 8 9 | wa | |- ( ( x e. P. /\ y e. P. ) /\ x C. y ) |
11 | 10 1 2 | copab | |- { <. x , y >. | ( ( x e. P. /\ y e. P. ) /\ x C. y ) } |
12 | 0 11 | wceq | |- |