Metamath Proof Explorer


Definition df-ltp

Description: Define ordering on positive reals. This is a "temporary" set used in the construction of complex numbers df-c , and is intended to be used only by the construction. From Proposition 9-3.2 of Gleason p. 122. (Contributed by NM, 14-Feb-1996) (New usage is discouraged.)

Ref Expression
Assertion df-ltp
|- 

. | ( ( x e. P. /\ y e. P. ) /\ x C. y ) }


Detailed syntax breakdown

Step Hyp Ref Expression
0 cltp
 |-  
1 vx
 |-  x
2 vy
 |-  y
3 1 cv
 |-  x
4 cnp
 |-  P.
5 3 4 wcel
 |-  x e. P.
6 2 cv
 |-  y
7 6 4 wcel
 |-  y e. P.
8 5 7 wa
 |-  ( x e. P. /\ y e. P. )
9 3 6 wpss
 |-  x C. y
10 8 9 wa
 |-  ( ( x e. P. /\ y e. P. ) /\ x C. y )
11 10 1 2 copab
 |-  { <. x , y >. | ( ( x e. P. /\ y e. P. ) /\ x C. y ) }
12 0 11 wceq
 |-  

. | ( ( x e. P. /\ y e. P. ) /\ x C. y ) }