Metamath Proof Explorer


Definition df-ltpq

Description: Define pre-ordering relation on positive fractions. This is a "temporary" set used in the construction of complex numbers df-c , and is intended to be used only by the construction. Similar to Definition 5 of Suppes p. 162. (Contributed by NM, 28-Aug-1995) (New usage is discouraged.)

Ref Expression
Assertion df-ltpq
|- . | ( ( x e. ( N. X. N. ) /\ y e. ( N. X. N. ) ) /\ ( ( 1st ` x ) .N ( 2nd ` y ) ) 

Detailed syntax breakdown

Step Hyp Ref Expression
0 cltpq
 |-  
1 vx
 |-  x
2 vy
 |-  y
3 1 cv
 |-  x
4 cnpi
 |-  N.
5 4 4 cxp
 |-  ( N. X. N. )
6 3 5 wcel
 |-  x e. ( N. X. N. )
7 2 cv
 |-  y
8 7 5 wcel
 |-  y e. ( N. X. N. )
9 6 8 wa
 |-  ( x e. ( N. X. N. ) /\ y e. ( N. X. N. ) )
10 c1st
 |-  1st
11 3 10 cfv
 |-  ( 1st ` x )
12 cmi
 |-  .N
13 c2nd
 |-  2nd
14 7 13 cfv
 |-  ( 2nd ` y )
15 11 14 12 co
 |-  ( ( 1st ` x ) .N ( 2nd ` y ) )
16 clti
 |-  
17 7 10 cfv
 |-  ( 1st ` y )
18 3 13 cfv
 |-  ( 2nd ` x )
19 17 18 12 co
 |-  ( ( 1st ` y ) .N ( 2nd ` x ) )
20 15 19 16 wbr
 |-  ( ( 1st ` x ) .N ( 2nd ` y ) ) 
21 9 20 wa
 |-  ( ( x e. ( N. X. N. ) /\ y e. ( N. X. N. ) ) /\ ( ( 1st ` x ) .N ( 2nd ` y ) ) 
22 21 1 2 copab
 |-  { <. x , y >. | ( ( x e. ( N. X. N. ) /\ y e. ( N. X. N. ) ) /\ ( ( 1st ` x ) .N ( 2nd ` y ) ) 
23 0 22 wceq
 |-  . | ( ( x e. ( N. X. N. ) /\ y e. ( N. X. N. ) ) /\ ( ( 1st ` x ) .N ( 2nd ` y ) )