Step |
Hyp |
Ref |
Expression |
0 |
|
cltpq |
|- |
1 |
|
vx |
|- x |
2 |
|
vy |
|- y |
3 |
1
|
cv |
|- x |
4 |
|
cnpi |
|- N. |
5 |
4 4
|
cxp |
|- ( N. X. N. ) |
6 |
3 5
|
wcel |
|- x e. ( N. X. N. ) |
7 |
2
|
cv |
|- y |
8 |
7 5
|
wcel |
|- y e. ( N. X. N. ) |
9 |
6 8
|
wa |
|- ( x e. ( N. X. N. ) /\ y e. ( N. X. N. ) ) |
10 |
|
c1st |
|- 1st |
11 |
3 10
|
cfv |
|- ( 1st ` x ) |
12 |
|
cmi |
|- .N |
13 |
|
c2nd |
|- 2nd |
14 |
7 13
|
cfv |
|- ( 2nd ` y ) |
15 |
11 14 12
|
co |
|- ( ( 1st ` x ) .N ( 2nd ` y ) ) |
16 |
|
clti |
|- |
17 |
7 10
|
cfv |
|- ( 1st ` y ) |
18 |
3 13
|
cfv |
|- ( 2nd ` x ) |
19 |
17 18 12
|
co |
|- ( ( 1st ` y ) .N ( 2nd ` x ) ) |
20 |
15 19 16
|
wbr |
|- ( ( 1st ` x ) .N ( 2nd ` y ) ) |
21 |
9 20
|
wa |
|- ( ( x e. ( N. X. N. ) /\ y e. ( N. X. N. ) ) /\ ( ( 1st ` x ) .N ( 2nd ` y ) ) |
22 |
21 1 2
|
copab |
|- { <. x , y >. | ( ( x e. ( N. X. N. ) /\ y e. ( N. X. N. ) ) /\ ( ( 1st ` x ) .N ( 2nd ` y ) ) |
23 |
0 22
|
wceq |
|- . | ( ( x e. ( N. X. N. ) /\ y e. ( N. X. N. ) ) /\ ( ( 1st ` x ) .N ( 2nd ` y ) ) |