| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cltpq |  |-   | 
						
							| 1 |  | vx |  |-  x | 
						
							| 2 |  | vy |  |-  y | 
						
							| 3 | 1 | cv |  |-  x | 
						
							| 4 |  | cnpi |  |-  N. | 
						
							| 5 | 4 4 | cxp |  |-  ( N. X. N. ) | 
						
							| 6 | 3 5 | wcel |  |-  x e. ( N. X. N. ) | 
						
							| 7 | 2 | cv |  |-  y | 
						
							| 8 | 7 5 | wcel |  |-  y e. ( N. X. N. ) | 
						
							| 9 | 6 8 | wa |  |-  ( x e. ( N. X. N. ) /\ y e. ( N. X. N. ) ) | 
						
							| 10 |  | c1st |  |-  1st | 
						
							| 11 | 3 10 | cfv |  |-  ( 1st ` x ) | 
						
							| 12 |  | cmi |  |-  .N | 
						
							| 13 |  | c2nd |  |-  2nd | 
						
							| 14 | 7 13 | cfv |  |-  ( 2nd ` y ) | 
						
							| 15 | 11 14 12 | co |  |-  ( ( 1st ` x ) .N ( 2nd ` y ) ) | 
						
							| 16 |  | clti |  |-   | 
						
							| 17 | 7 10 | cfv |  |-  ( 1st ` y ) | 
						
							| 18 | 3 13 | cfv |  |-  ( 2nd ` x ) | 
						
							| 19 | 17 18 12 | co |  |-  ( ( 1st ` y ) .N ( 2nd ` x ) ) | 
						
							| 20 | 15 19 16 | wbr |  |-  ( ( 1st ` x ) .N ( 2nd ` y ) )  | 
						
							| 21 | 9 20 | wa |  |-  ( ( x e. ( N. X. N. ) /\ y e. ( N. X. N. ) ) /\ ( ( 1st ` x ) .N ( 2nd ` y ) )  | 
						
							| 22 | 21 1 2 | copab |  |-  { <. x , y >. | ( ( x e. ( N. X. N. ) /\ y e. ( N. X. N. ) ) /\ ( ( 1st ` x ) .N ( 2nd ` y ) )  | 
						
							| 23 | 0 22 | wceq |  |-  . | ( ( x e. ( N. X. N. ) /\ y e. ( N. X. N. ) ) /\ ( ( 1st ` x ) .N ( 2nd ` y ) )  |