Step |
Hyp |
Ref |
Expression |
0 |
|
cltrn |
|- LTrn |
1 |
|
vk |
|- k |
2 |
|
cvv |
|- _V |
3 |
|
vw |
|- w |
4 |
|
clh |
|- LHyp |
5 |
1
|
cv |
|- k |
6 |
5 4
|
cfv |
|- ( LHyp ` k ) |
7 |
|
vf |
|- f |
8 |
|
cldil |
|- LDil |
9 |
5 8
|
cfv |
|- ( LDil ` k ) |
10 |
3
|
cv |
|- w |
11 |
10 9
|
cfv |
|- ( ( LDil ` k ) ` w ) |
12 |
|
vp |
|- p |
13 |
|
catm |
|- Atoms |
14 |
5 13
|
cfv |
|- ( Atoms ` k ) |
15 |
|
vq |
|- q |
16 |
12
|
cv |
|- p |
17 |
|
cple |
|- le |
18 |
5 17
|
cfv |
|- ( le ` k ) |
19 |
16 10 18
|
wbr |
|- p ( le ` k ) w |
20 |
19
|
wn |
|- -. p ( le ` k ) w |
21 |
15
|
cv |
|- q |
22 |
21 10 18
|
wbr |
|- q ( le ` k ) w |
23 |
22
|
wn |
|- -. q ( le ` k ) w |
24 |
20 23
|
wa |
|- ( -. p ( le ` k ) w /\ -. q ( le ` k ) w ) |
25 |
|
cjn |
|- join |
26 |
5 25
|
cfv |
|- ( join ` k ) |
27 |
7
|
cv |
|- f |
28 |
16 27
|
cfv |
|- ( f ` p ) |
29 |
16 28 26
|
co |
|- ( p ( join ` k ) ( f ` p ) ) |
30 |
|
cmee |
|- meet |
31 |
5 30
|
cfv |
|- ( meet ` k ) |
32 |
29 10 31
|
co |
|- ( ( p ( join ` k ) ( f ` p ) ) ( meet ` k ) w ) |
33 |
21 27
|
cfv |
|- ( f ` q ) |
34 |
21 33 26
|
co |
|- ( q ( join ` k ) ( f ` q ) ) |
35 |
34 10 31
|
co |
|- ( ( q ( join ` k ) ( f ` q ) ) ( meet ` k ) w ) |
36 |
32 35
|
wceq |
|- ( ( p ( join ` k ) ( f ` p ) ) ( meet ` k ) w ) = ( ( q ( join ` k ) ( f ` q ) ) ( meet ` k ) w ) |
37 |
24 36
|
wi |
|- ( ( -. p ( le ` k ) w /\ -. q ( le ` k ) w ) -> ( ( p ( join ` k ) ( f ` p ) ) ( meet ` k ) w ) = ( ( q ( join ` k ) ( f ` q ) ) ( meet ` k ) w ) ) |
38 |
37 15 14
|
wral |
|- A. q e. ( Atoms ` k ) ( ( -. p ( le ` k ) w /\ -. q ( le ` k ) w ) -> ( ( p ( join ` k ) ( f ` p ) ) ( meet ` k ) w ) = ( ( q ( join ` k ) ( f ` q ) ) ( meet ` k ) w ) ) |
39 |
38 12 14
|
wral |
|- A. p e. ( Atoms ` k ) A. q e. ( Atoms ` k ) ( ( -. p ( le ` k ) w /\ -. q ( le ` k ) w ) -> ( ( p ( join ` k ) ( f ` p ) ) ( meet ` k ) w ) = ( ( q ( join ` k ) ( f ` q ) ) ( meet ` k ) w ) ) |
40 |
39 7 11
|
crab |
|- { f e. ( ( LDil ` k ) ` w ) | A. p e. ( Atoms ` k ) A. q e. ( Atoms ` k ) ( ( -. p ( le ` k ) w /\ -. q ( le ` k ) w ) -> ( ( p ( join ` k ) ( f ` p ) ) ( meet ` k ) w ) = ( ( q ( join ` k ) ( f ` q ) ) ( meet ` k ) w ) ) } |
41 |
3 6 40
|
cmpt |
|- ( w e. ( LHyp ` k ) |-> { f e. ( ( LDil ` k ) ` w ) | A. p e. ( Atoms ` k ) A. q e. ( Atoms ` k ) ( ( -. p ( le ` k ) w /\ -. q ( le ` k ) w ) -> ( ( p ( join ` k ) ( f ` p ) ) ( meet ` k ) w ) = ( ( q ( join ` k ) ( f ` q ) ) ( meet ` k ) w ) ) } ) |
42 |
1 2 41
|
cmpt |
|- ( k e. _V |-> ( w e. ( LHyp ` k ) |-> { f e. ( ( LDil ` k ) ` w ) | A. p e. ( Atoms ` k ) A. q e. ( Atoms ` k ) ( ( -. p ( le ` k ) w /\ -. q ( le ` k ) w ) -> ( ( p ( join ` k ) ( f ` p ) ) ( meet ` k ) w ) = ( ( q ( join ` k ) ( f ` q ) ) ( meet ` k ) w ) ) } ) ) |
43 |
0 42
|
wceq |
|- LTrn = ( k e. _V |-> ( w e. ( LHyp ` k ) |-> { f e. ( ( LDil ` k ) ` w ) | A. p e. ( Atoms ` k ) A. q e. ( Atoms ` k ) ( ( -. p ( le ` k ) w /\ -. q ( le ` k ) w ) -> ( ( p ( join ` k ) ( f ` p ) ) ( meet ` k ) w ) = ( ( q ( join ` k ) ( f ` q ) ) ( meet ` k ) w ) ) } ) ) |