Step |
Hyp |
Ref |
Expression |
0 |
|
cmadu |
|- maAdju |
1 |
|
vn |
|- n |
2 |
|
cvv |
|- _V |
3 |
|
vr |
|- r |
4 |
|
vm |
|- m |
5 |
|
cbs |
|- Base |
6 |
1
|
cv |
|- n |
7 |
|
cmat |
|- Mat |
8 |
3
|
cv |
|- r |
9 |
6 8 7
|
co |
|- ( n Mat r ) |
10 |
9 5
|
cfv |
|- ( Base ` ( n Mat r ) ) |
11 |
|
vi |
|- i |
12 |
|
vj |
|- j |
13 |
|
cmdat |
|- maDet |
14 |
6 8 13
|
co |
|- ( n maDet r ) |
15 |
|
vk |
|- k |
16 |
|
vl |
|- l |
17 |
15
|
cv |
|- k |
18 |
12
|
cv |
|- j |
19 |
17 18
|
wceq |
|- k = j |
20 |
16
|
cv |
|- l |
21 |
11
|
cv |
|- i |
22 |
20 21
|
wceq |
|- l = i |
23 |
|
cur |
|- 1r |
24 |
8 23
|
cfv |
|- ( 1r ` r ) |
25 |
|
c0g |
|- 0g |
26 |
8 25
|
cfv |
|- ( 0g ` r ) |
27 |
22 24 26
|
cif |
|- if ( l = i , ( 1r ` r ) , ( 0g ` r ) ) |
28 |
4
|
cv |
|- m |
29 |
17 20 28
|
co |
|- ( k m l ) |
30 |
19 27 29
|
cif |
|- if ( k = j , if ( l = i , ( 1r ` r ) , ( 0g ` r ) ) , ( k m l ) ) |
31 |
15 16 6 6 30
|
cmpo |
|- ( k e. n , l e. n |-> if ( k = j , if ( l = i , ( 1r ` r ) , ( 0g ` r ) ) , ( k m l ) ) ) |
32 |
31 14
|
cfv |
|- ( ( n maDet r ) ` ( k e. n , l e. n |-> if ( k = j , if ( l = i , ( 1r ` r ) , ( 0g ` r ) ) , ( k m l ) ) ) ) |
33 |
11 12 6 6 32
|
cmpo |
|- ( i e. n , j e. n |-> ( ( n maDet r ) ` ( k e. n , l e. n |-> if ( k = j , if ( l = i , ( 1r ` r ) , ( 0g ` r ) ) , ( k m l ) ) ) ) ) |
34 |
4 10 33
|
cmpt |
|- ( m e. ( Base ` ( n Mat r ) ) |-> ( i e. n , j e. n |-> ( ( n maDet r ) ` ( k e. n , l e. n |-> if ( k = j , if ( l = i , ( 1r ` r ) , ( 0g ` r ) ) , ( k m l ) ) ) ) ) ) |
35 |
1 3 2 2 34
|
cmpo |
|- ( n e. _V , r e. _V |-> ( m e. ( Base ` ( n Mat r ) ) |-> ( i e. n , j e. n |-> ( ( n maDet r ) ` ( k e. n , l e. n |-> if ( k = j , if ( l = i , ( 1r ` r ) , ( 0g ` r ) ) , ( k m l ) ) ) ) ) ) ) |
36 |
0 35
|
wceq |
|- maAdju = ( n e. _V , r e. _V |-> ( m e. ( Base ` ( n Mat r ) ) |-> ( i e. n , j e. n |-> ( ( n maDet r ) ` ( k e. n , l e. n |-> if ( k = j , if ( l = i , ( 1r ` r ) , ( 0g ` r ) ) , ( k m l ) ) ) ) ) ) ) |