| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cmmul |  |-  maMul | 
						
							| 1 |  | vr |  |-  r | 
						
							| 2 |  | cvv |  |-  _V | 
						
							| 3 |  | vo |  |-  o | 
						
							| 4 |  | c1st |  |-  1st | 
						
							| 5 | 3 | cv |  |-  o | 
						
							| 6 | 5 4 | cfv |  |-  ( 1st ` o ) | 
						
							| 7 | 6 4 | cfv |  |-  ( 1st ` ( 1st ` o ) ) | 
						
							| 8 |  | vm |  |-  m | 
						
							| 9 |  | c2nd |  |-  2nd | 
						
							| 10 | 6 9 | cfv |  |-  ( 2nd ` ( 1st ` o ) ) | 
						
							| 11 |  | vn |  |-  n | 
						
							| 12 | 5 9 | cfv |  |-  ( 2nd ` o ) | 
						
							| 13 |  | vp |  |-  p | 
						
							| 14 |  | vx |  |-  x | 
						
							| 15 |  | cbs |  |-  Base | 
						
							| 16 | 1 | cv |  |-  r | 
						
							| 17 | 16 15 | cfv |  |-  ( Base ` r ) | 
						
							| 18 |  | cmap |  |-  ^m | 
						
							| 19 | 8 | cv |  |-  m | 
						
							| 20 | 11 | cv |  |-  n | 
						
							| 21 | 19 20 | cxp |  |-  ( m X. n ) | 
						
							| 22 | 17 21 18 | co |  |-  ( ( Base ` r ) ^m ( m X. n ) ) | 
						
							| 23 |  | vy |  |-  y | 
						
							| 24 | 13 | cv |  |-  p | 
						
							| 25 | 20 24 | cxp |  |-  ( n X. p ) | 
						
							| 26 | 17 25 18 | co |  |-  ( ( Base ` r ) ^m ( n X. p ) ) | 
						
							| 27 |  | vi |  |-  i | 
						
							| 28 |  | vk |  |-  k | 
						
							| 29 |  | cgsu |  |-  gsum | 
						
							| 30 |  | vj |  |-  j | 
						
							| 31 | 27 | cv |  |-  i | 
						
							| 32 | 14 | cv |  |-  x | 
						
							| 33 | 30 | cv |  |-  j | 
						
							| 34 | 31 33 32 | co |  |-  ( i x j ) | 
						
							| 35 |  | cmulr |  |-  .r | 
						
							| 36 | 16 35 | cfv |  |-  ( .r ` r ) | 
						
							| 37 | 23 | cv |  |-  y | 
						
							| 38 | 28 | cv |  |-  k | 
						
							| 39 | 33 38 37 | co |  |-  ( j y k ) | 
						
							| 40 | 34 39 36 | co |  |-  ( ( i x j ) ( .r ` r ) ( j y k ) ) | 
						
							| 41 | 30 20 40 | cmpt |  |-  ( j e. n |-> ( ( i x j ) ( .r ` r ) ( j y k ) ) ) | 
						
							| 42 | 16 41 29 | co |  |-  ( r gsum ( j e. n |-> ( ( i x j ) ( .r ` r ) ( j y k ) ) ) ) | 
						
							| 43 | 27 28 19 24 42 | cmpo |  |-  ( i e. m , k e. p |-> ( r gsum ( j e. n |-> ( ( i x j ) ( .r ` r ) ( j y k ) ) ) ) ) | 
						
							| 44 | 14 23 22 26 43 | cmpo |  |-  ( x e. ( ( Base ` r ) ^m ( m X. n ) ) , y e. ( ( Base ` r ) ^m ( n X. p ) ) |-> ( i e. m , k e. p |-> ( r gsum ( j e. n |-> ( ( i x j ) ( .r ` r ) ( j y k ) ) ) ) ) ) | 
						
							| 45 | 13 12 44 | csb |  |-  [_ ( 2nd ` o ) / p ]_ ( x e. ( ( Base ` r ) ^m ( m X. n ) ) , y e. ( ( Base ` r ) ^m ( n X. p ) ) |-> ( i e. m , k e. p |-> ( r gsum ( j e. n |-> ( ( i x j ) ( .r ` r ) ( j y k ) ) ) ) ) ) | 
						
							| 46 | 11 10 45 | csb |  |-  [_ ( 2nd ` ( 1st ` o ) ) / n ]_ [_ ( 2nd ` o ) / p ]_ ( x e. ( ( Base ` r ) ^m ( m X. n ) ) , y e. ( ( Base ` r ) ^m ( n X. p ) ) |-> ( i e. m , k e. p |-> ( r gsum ( j e. n |-> ( ( i x j ) ( .r ` r ) ( j y k ) ) ) ) ) ) | 
						
							| 47 | 8 7 46 | csb |  |-  [_ ( 1st ` ( 1st ` o ) ) / m ]_ [_ ( 2nd ` ( 1st ` o ) ) / n ]_ [_ ( 2nd ` o ) / p ]_ ( x e. ( ( Base ` r ) ^m ( m X. n ) ) , y e. ( ( Base ` r ) ^m ( n X. p ) ) |-> ( i e. m , k e. p |-> ( r gsum ( j e. n |-> ( ( i x j ) ( .r ` r ) ( j y k ) ) ) ) ) ) | 
						
							| 48 | 1 3 2 2 47 | cmpo |  |-  ( r e. _V , o e. _V |-> [_ ( 1st ` ( 1st ` o ) ) / m ]_ [_ ( 2nd ` ( 1st ` o ) ) / n ]_ [_ ( 2nd ` o ) / p ]_ ( x e. ( ( Base ` r ) ^m ( m X. n ) ) , y e. ( ( Base ` r ) ^m ( n X. p ) ) |-> ( i e. m , k e. p |-> ( r gsum ( j e. n |-> ( ( i x j ) ( .r ` r ) ( j y k ) ) ) ) ) ) ) | 
						
							| 49 | 0 48 | wceq |  |-  maMul = ( r e. _V , o e. _V |-> [_ ( 1st ` ( 1st ` o ) ) / m ]_ [_ ( 2nd ` ( 1st ` o ) ) / n ]_ [_ ( 2nd ` o ) / p ]_ ( x e. ( ( Base ` r ) ^m ( m X. n ) ) , y e. ( ( Base ` r ) ^m ( n X. p ) ) |-> ( i e. m , k e. p |-> ( r gsum ( j e. n |-> ( ( i x j ) ( .r ` r ) ( j y k ) ) ) ) ) ) ) |