| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cmmul |
|- maMul |
| 1 |
|
vr |
|- r |
| 2 |
|
cvv |
|- _V |
| 3 |
|
vo |
|- o |
| 4 |
|
c1st |
|- 1st |
| 5 |
3
|
cv |
|- o |
| 6 |
5 4
|
cfv |
|- ( 1st ` o ) |
| 7 |
6 4
|
cfv |
|- ( 1st ` ( 1st ` o ) ) |
| 8 |
|
vm |
|- m |
| 9 |
|
c2nd |
|- 2nd |
| 10 |
6 9
|
cfv |
|- ( 2nd ` ( 1st ` o ) ) |
| 11 |
|
vn |
|- n |
| 12 |
5 9
|
cfv |
|- ( 2nd ` o ) |
| 13 |
|
vp |
|- p |
| 14 |
|
vx |
|- x |
| 15 |
|
cbs |
|- Base |
| 16 |
1
|
cv |
|- r |
| 17 |
16 15
|
cfv |
|- ( Base ` r ) |
| 18 |
|
cmap |
|- ^m |
| 19 |
8
|
cv |
|- m |
| 20 |
11
|
cv |
|- n |
| 21 |
19 20
|
cxp |
|- ( m X. n ) |
| 22 |
17 21 18
|
co |
|- ( ( Base ` r ) ^m ( m X. n ) ) |
| 23 |
|
vy |
|- y |
| 24 |
13
|
cv |
|- p |
| 25 |
20 24
|
cxp |
|- ( n X. p ) |
| 26 |
17 25 18
|
co |
|- ( ( Base ` r ) ^m ( n X. p ) ) |
| 27 |
|
vi |
|- i |
| 28 |
|
vk |
|- k |
| 29 |
|
cgsu |
|- gsum |
| 30 |
|
vj |
|- j |
| 31 |
27
|
cv |
|- i |
| 32 |
14
|
cv |
|- x |
| 33 |
30
|
cv |
|- j |
| 34 |
31 33 32
|
co |
|- ( i x j ) |
| 35 |
|
cmulr |
|- .r |
| 36 |
16 35
|
cfv |
|- ( .r ` r ) |
| 37 |
23
|
cv |
|- y |
| 38 |
28
|
cv |
|- k |
| 39 |
33 38 37
|
co |
|- ( j y k ) |
| 40 |
34 39 36
|
co |
|- ( ( i x j ) ( .r ` r ) ( j y k ) ) |
| 41 |
30 20 40
|
cmpt |
|- ( j e. n |-> ( ( i x j ) ( .r ` r ) ( j y k ) ) ) |
| 42 |
16 41 29
|
co |
|- ( r gsum ( j e. n |-> ( ( i x j ) ( .r ` r ) ( j y k ) ) ) ) |
| 43 |
27 28 19 24 42
|
cmpo |
|- ( i e. m , k e. p |-> ( r gsum ( j e. n |-> ( ( i x j ) ( .r ` r ) ( j y k ) ) ) ) ) |
| 44 |
14 23 22 26 43
|
cmpo |
|- ( x e. ( ( Base ` r ) ^m ( m X. n ) ) , y e. ( ( Base ` r ) ^m ( n X. p ) ) |-> ( i e. m , k e. p |-> ( r gsum ( j e. n |-> ( ( i x j ) ( .r ` r ) ( j y k ) ) ) ) ) ) |
| 45 |
13 12 44
|
csb |
|- [_ ( 2nd ` o ) / p ]_ ( x e. ( ( Base ` r ) ^m ( m X. n ) ) , y e. ( ( Base ` r ) ^m ( n X. p ) ) |-> ( i e. m , k e. p |-> ( r gsum ( j e. n |-> ( ( i x j ) ( .r ` r ) ( j y k ) ) ) ) ) ) |
| 46 |
11 10 45
|
csb |
|- [_ ( 2nd ` ( 1st ` o ) ) / n ]_ [_ ( 2nd ` o ) / p ]_ ( x e. ( ( Base ` r ) ^m ( m X. n ) ) , y e. ( ( Base ` r ) ^m ( n X. p ) ) |-> ( i e. m , k e. p |-> ( r gsum ( j e. n |-> ( ( i x j ) ( .r ` r ) ( j y k ) ) ) ) ) ) |
| 47 |
8 7 46
|
csb |
|- [_ ( 1st ` ( 1st ` o ) ) / m ]_ [_ ( 2nd ` ( 1st ` o ) ) / n ]_ [_ ( 2nd ` o ) / p ]_ ( x e. ( ( Base ` r ) ^m ( m X. n ) ) , y e. ( ( Base ` r ) ^m ( n X. p ) ) |-> ( i e. m , k e. p |-> ( r gsum ( j e. n |-> ( ( i x j ) ( .r ` r ) ( j y k ) ) ) ) ) ) |
| 48 |
1 3 2 2 47
|
cmpo |
|- ( r e. _V , o e. _V |-> [_ ( 1st ` ( 1st ` o ) ) / m ]_ [_ ( 2nd ` ( 1st ` o ) ) / n ]_ [_ ( 2nd ` o ) / p ]_ ( x e. ( ( Base ` r ) ^m ( m X. n ) ) , y e. ( ( Base ` r ) ^m ( n X. p ) ) |-> ( i e. m , k e. p |-> ( r gsum ( j e. n |-> ( ( i x j ) ( .r ` r ) ( j y k ) ) ) ) ) ) ) |
| 49 |
0 48
|
wceq |
|- maMul = ( r e. _V , o e. _V |-> [_ ( 1st ` ( 1st ` o ) ) / m ]_ [_ ( 2nd ` ( 1st ` o ) ) / n ]_ [_ ( 2nd ` o ) / p ]_ ( x e. ( ( Base ` r ) ^m ( m X. n ) ) , y e. ( ( Base ` r ) ^m ( n X. p ) ) |-> ( i e. m , k e. p |-> ( r gsum ( j e. n |-> ( ( i x j ) ( .r ` r ) ( j y k ) ) ) ) ) ) ) |