Metamath Proof Explorer


Definition df-map

Description: Define the mapping operation or set exponentiation. The set of all functions that map from B to A is written ( A ^m B ) (see mapval ). Many authors write A followed by B as a superscript for this operation and rely on context to avoid confusion other exponentiation operations (e.g., Definition 10.42 of TakeutiZaring p. 95). Other authors show B as a prefixed superscript, which is read " A pre B " (e.g., definition of Enderton p. 52). Definition 8.21 of Eisenberg p. 125 uses the notation Map( B , A ) for our ( A ^m B ) . The up-arrow is used by Donald Knuth for iterated exponentiation (_Science_ 194, 1235-1242, 1976). We adopt the first case of his notation (simple exponentiation) and subscript it withm to distinguish it from other kinds of exponentiation. (Contributed by NM, 8-Dec-2003)

Ref Expression
Assertion df-map
|- ^m = ( x e. _V , y e. _V |-> { f | f : y --> x } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmap
 |-  ^m
1 vx
 |-  x
2 cvv
 |-  _V
3 vy
 |-  y
4 vf
 |-  f
5 4 cv
 |-  f
6 3 cv
 |-  y
7 1 cv
 |-  x
8 6 7 5 wf
 |-  f : y --> x
9 8 4 cab
 |-  { f | f : y --> x }
10 1 3 2 2 9 cmpo
 |-  ( x e. _V , y e. _V |-> { f | f : y --> x } )
11 0 10 wceq
 |-  ^m = ( x e. _V , y e. _V |-> { f | f : y --> x } )